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РЕФЕРАТ Митохондриальная дисфункция является одним из патогенетических механизмов повреж-
дения нейронов в процессе старения. Высокая энергетическая зависимость нервных клеток делает их 
особо уязвимыми для возраст-ассоциированных изменений, которые сопровождаются окислительным 
стрессом и нарушением энергетического метаболизма. Поддержание пула функциональных митохон-
дрий регулируется митофагией, обеспечивающей утилизацию поврежденных органелл и препятству-
ющей прогрессированию митохондриальной дисфункции. Старение головного мозга сопровождает-
ся снижением активности митофагических процессов, нарастанием митохондриальной дисфункции 
и увеличением риска развития нейродегенеративных заболеваний, таких как болезнь Альцгеймера 
и болезнь Паркинсона. В данном обзоре освещаются молекулярные и сигнальные пути митофагии, 
ее дисрегуляция при физиологическом и патологическом старении, что представляет особый интерес 
для выявления фармацевтических мишеней и разработки потенциальной терапии нейродегенератив-
ных состояний. 
КЛЮЧЕВЫЕ СЛОВА митофагия, митохондрии, старение, болезнь Альцгеймера, болезнь Паркинсона. 
СПИСОК СОКРАЩЕНИЙ БА – болезнь Альцгеймера, БП – болезнь Паркинсона.
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ВВЕДЕНИЕ
Возрастные изменения, неизбежно развивающиеся 
в головном мозге в процессе старения, представля-
ют значительную социальную проблему, поскольку 
часто сопровождаются возникновением когнитив-
ных нарушений и лежат в основе патогенеза ряда 
нейродегенеративных заболеваний [1, 2]. 

Особая роль в поддержании адекватного функ-
ционирования нейронов при возрастной и пато-
логической инволюции головного мозга принадле-
жит митохондриям – органеллам, выполняющим 
широчайший спектр функциональной нагрузки 
по координации внутриклеточного гомеостаза [3]. 
Митохондриальная дисфункция значительно уве-
личивает риск развития возраст-ассоциирован-
ных нейродегенеративных заболеваний не только 
из-за энергетического дефицита, развивающегося 
в нервной ткани, но и в результате гиперпродук-
ции активных форм кислорода, инициации апоптоза 
и воспалительных реакций, а также нарушения си-
наптической передачи [4]. 

Структурно-функциональные характеристики 
митохондрий постоянно находятся в состоянии бы-
стрых преобразований, основные этапы которых 
принято называть «митохондриальной динамикой». 
Митохондриальная динамика, включающая такие 
ключевые процессы, как биогенез, деление и слия-
ние этих органелл, нуждается также в адекватной 
системе их элиминации – митофагии [5].

Митофагия – процесс, направленный на утили-
зацию поврежденных органелл и регулирующий 
содержание митохондрий в клетках на уровне, 
необходимом для поддержания метаболическо-
го баланса [6]. При этом происходит поглощение 
дефектных митохондрий специализированными 
везикулами с последующим их слиянием с лизо-
сомами, обеспечивающими деградацию дефектных 
органелл [7–9]. 

Особенности строения и функционирования нерв-
ной ткани, ее высокая потребность в энергетическом 
обеспечении, необходимость постоянного обновления 
компонентов цитоплазмы клеток определяют важ-
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ность митофагии в поддержании функционального 
пула нейронов. 

Старение головного мозга сопровождается сниже-
нием активности митофагических процессов, нараста-
нием митохондриальной дисфункции и увеличением 
риска развития нейродегенеративных заболеваний 
[10, 11]. Накопление нейротоксических белковых 
агрегатов, играющих центральную роль в патогенезе 
данной патологии, связывают, согласно современным 
представлениям, с мутациями в генах белков, запу-
скающих митофагию (PINK1, Parkin, DJ-1) [12]. 

Несмотря на актуальность и высокую социальную 
значимость проблемы, многие аспекты старения го-
ловного мозга остаются недостаточно исследован-
ными. Выяснение роли митохондриальной дисфунк-
ции и выявление ключевых маркеров митофагии 
в процессе возрастной инволюции представляют-
ся актуальной задачей современной геронтологии 
и необходимым этапом определения новых фарма-
цевтических мишеней для воздействия на нейроде-
генеративные процессы. 

ОБЩИЕ СВЕДЕНИЯ О МЕХАНИЗМАХ 
МАКРОАУТОФАГИИ. МИТОФАГИЯ
Утилизация крупных внутриклеточных субстратов, 
в частности, старых и поврежденных органелл, осу-
ществляется при помощи макроаутофагии – вида 
аутофагии, при котором выявление и последующее 
разрушение дефектных структур происходит в ау-
тофагосоме, образующейся при слиянии лизосомы 
и двумембранной органеллы – фагофора. Процессы 
аутофагии в клетке запускаются различными фак-
торами, такими как накопление патологических бел-
ковых агрегатов, воздействие гипоксии, дефицит 
нутриентов, окислительный стресс. В восприятии 
инициирующих аутофагию сигналов и формировании 
аутофагосомы принимают участие различные белки, 
синтез которых кодируется генами Atg (Autophagy-
related genes) [13]. Особая роль в процессе аутофаго-
сомной деградации принадлежит белку LC3 (ATG8), 
который находится на мембране фагофора и связы-
вается с предварительно убиквитинированной мише-
нью через белки-адаптеры [14]. Среди наиболее хо-
рошо изученных адаптеров аутофагии выделяют p62 
(основной адаптер практически во всех путях мито-
фагии), NBR1 (участвует в деградации пероксисом), 
NDP52 (участвует в убиквитинзависимой митофа-
гии), TAX1BP1 и оптинейрин (OPTIN), необходимые 
для убиквитинзависимой митофагии и аутофагии 
белковых агрегатов [15].

Потенциальными источниками построения фа-
гофора являются цитолемма и органеллы клетки: 
комплекс Гольджи, эндоплазматический ретикулум, 
митохондрии. 

Сборка фагофора de novo инициируется двумя 
цитоплазматическими белковыми комплексами: 
PI3K (class III PI3K complex I) и Atg1/ULK1, со-
стоящими из каталитических и регуляторных субъ-
единиц [6, 16, 17]. Фосфорилирование комплекса 
PI3K индуцирует локальную продукцию мембран-
ного фосфолипида PI3P (фосфатидилинозитол-
3-фосфат) в характерных субдоменах эндоплаз-
матического ретикулума, получивших название 
омегасомы [18]. PI3P необходим для привлечения 
молекул фосфолипидов, участвующих в росте фа-
гофора, посредством связывания эффекторных бел-
ков WIPI и DFCP. Последние обеспечивают взаи-
модействие PI3P c двумя системами конъюгации 
LC3/ATG7/ATG3 и ATG5/12/ATG16L1 [19]. На сле-
дующем этапе происходит встраивание белков се-
мейства Atg (autophagy-related proteins) в изолиру-
ющую мембрану и образование фагофора [20, 21]. 
Системы конъюгации при этом необходимы не толь-
ко для расширения фагофора, но и для завершения 
формирования аутофагосомы и секвестрации груза. 
Избирательный захват различных мишеней обеспе-
чивается рецепторными белками, локализующимися 
на поверхности объекта аутофагии, с помощью спе-
циализированных адаптерных белков аутофагосомы 
[22]. Адаптеры, несмотря на их большое количество, 
используют, по-видимому, общий механизм ауто-
фагии: рекрутирование комплекса ULK1/2 и свя-
зывание с субъединицей FIP200 (белок адгезии) 
для инициации образования аутофагосом [15, 23]. 

После деградации субстрата в аутофагосоме об-
разуются макромолекулы, которые снова попадают 
в цитозоль и включаются в метаболические процессы 
клетки [16, 24]. Регуляция активности аутофагии обе-
спечивается в основном двумя сигнальными путями:
 1. Путь PI3K/АКТ/mTOR, ингибирующий аутофа-
гию и препятствующий образованию аутофагосомы. 
На активность mTORС1 (рапамицин-чувствительный 
комплекс млекопитающих) влияет количество амино-
кислот, инсулина и ростовых факторов в клетке.
 2. Сигнальный путь АМPK, реагирующий на уро-
вень АТР, активируется при гипоксии [16, 25]. 

Роль в механизмах аутофагии таких сигнальных 
молекул, как сиртуины, TFEB (transcription factor 
EB) и др., изучена в меньшей степени и нуждается 
в детальном исследовании.

Процесс сборки фагофора регулируется в том 
числе и белками митохондрий. Так, хорошо извест-
ный белок Beclin 1, который является частью проау-
тофагического комплекса PI3K класса III и участву-
ет в сборке фагофора, инициирует процесс Beclin 
1-зависимой аутофагии как на уровне эндоплазма-
тического ретикулума, так и на уровне митохондрий 
[26, 27].
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МИТОФАГИЯ ПРИ ФИЗИОЛОГИЧЕСКОМ СТАРЕНИИ
Дезорганизация митохондрий, прогрессирующая 
при старении, сопровождается развитием митохон-
дриальной дисфункции, что подтверждается ре-
зультатами электронно-микроскопических исследо-
ваний [31].

Рис. 1. Механизм митофагии. Стадии: А – инициа-
ция митофагии, Б – рецепторные взаимодействия, 
В – рост фагофора, Г – слияние везикулы с лизосо-
мой. Инициация митофагии происходит под влиянием 
стрессовых факторов и сопровождается активацией 
ATG1/ULK1 и фосфорилированием PI3K, что индуци-
рует продукцию PI3P в ЭПС. PI3P необходим для свя-
зывания эффекторных белков WIPI, обеспечивающих 
взаимодействие c системой конъюгации LC3. Избира-
тельный захват митохондрий реализуется при участии 
специализированных адаптерных белков (TAX1BP1, 
NDP52, р62, OPTIN, NBR1) (А). Далее происходит 
опосредованное паркином и убиквитином связывание 
LС3 с PINK1 на мембране митохондрий. WIPI 1–4, при-
соединяясь к PI3P, обеспечивает взаимодействие с LC3 
и правильную работу комплекса (Б). Рост фагофора 
происходит посредством переноса ФЛ из просвета 
ЭПС при участии PI3P. Одновременно с этим в стен-
ках фагофора активируется PIS, инициируя синтез 
фосфолипидов de novo (В). LC3 обеспечивает от-
щепление везикулы от ЭПС. Происходит ее слияние 
с лизосомой с последующей деструкцией содер-
жимого (Г). PI3K – фосфоинозитид-3-киназа; PI3P – 
фосфатидилинозитол-3-фосфат); TAX1BP1 – Tax1-
связывающий белок 1; NDP52 – рецептор аутофагии; 
OPTIN – оптинейрин; PINK1 – PTEN-индуцированная 
киназа 1; BNIP3 – белок 3, взаимодействующий с бел-
ком BCL2; ФЛ – фосфолипиды; PIS – фосфатидилино-
зитолсинтаза, ЭПС – эндоплазматическая сеть
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Другой инициатор аутофагии – белок эндофилин 
В1 – в условиях стресса может рекрутироваться 
на внешней митохондриальной мембране, где ак-
тивирует ранее описанный инициаторный ком-
плекс PI3K класса III через связывание адаптера 
Beclin 1 [26].

Митофагия – это селективная утилизация мито-
хондрий посредством аутофагосомной деградации. 
Процессу митофагии предшествуют изменения мор-
фологии митохондрий. Так деление митохондрий, 
опосредованное белками DRP1 и Fis1, обеспечивает 
их периферическую фрагментацию и отделяет по-
врежденные участки органеллы для последующей 
утилизации [28].

Механизм классической митофагии основан 
на индукции белка митохондриальной мембраны 
серин-треониновой киназы PTEN 1 (PINK1) и бел-
ка паркин (PARK2), который является цитозольной 
убиквитин-E3-лигазой. Таким образом, гены PINK1 
(PARK7) и PARK2, кодирующие белки, ассоцииро-
ванные с семейными формами паркинсонизма, игра-
ют важную роль в контроле качества митохондрий. 
Сигналом для активации митофагии в этом случае 
служит потеря потенциала внутренней мембра-
ны, сопутствующая повреждению митохондрий. 
К известным субстратам PINK1 относятся убик-
витин и гомологичный убиквитину домен паркина. 
Фосфорилирование этих мишеней по консерватив-
ному остатку серина (S65) ведет к активации пар-
кина, последующему захвату поврежденных мито-
хондрий и формированию аутофагосом [29] (рис. 1). 

Транслокация паркина из цитозоля на наруж-
ную мембрану митохондрий зависит от активности 
PINK1. Паркин в свою очередь катализирует убик-
витинирование и протеасомную деградацию различ-
ных белков наружной митохондриальной мембраны, 
включая Drp1, Miro, митофузины 1 и 2 (MFN1/2). 
Этот механизм блокирует слияние митохондрий, 
позволяя изолировать поврежденные органеллы 
и инициировать процесс аутофагии через систему 
адаптерных белков.

При гипоксии и ряде токсических воздействий 
процесс митофагии реализуется PINK1–Parkin-
независимым путем через рецепторы митохондри-
альных мембран, содержащие мотивы LIR:
• �белки AMBRA1, BNIP3, FUNDC1 и NIX на внеш-

ней митохондриальной мембране; 
• �кардиолипин и PHB2 на внутренней митохондри-

альной мембране. 
Убиквитинирование этих рецепторов служит сиг-

налом для cargo-рецепторов p62/SQSTM1, NDP52, 
оптинейрина и других, связывающихся с убиквити-
ном и белком аутофагосомных мембран LC3B, опос-
редуя митофагию [30].
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При изучении ультраструктуры митохондрий 
в процессе физиологического старения было уста-
новлено уменьшение их длины и площади, моди-
фикация крист и мембран. Показано, что подобные 
морфологические изменения коррелируют с уве-
личением экспрессии маркера митохондриального 
деления – фосфорилированного Drp1, и снижени-
ем содержания белков слияния митохондрий Mfn2 
и маркера аутофагии LC3B. Повышенная фрагмен-
тация митохондрий при старении приводила к из-
менению их функции: отмечалось, в частности, сни-
жение транспорта АТР/АDP вследствие уменьшения 
уровня белка Vdac1 (участвует в регуляции прони-
цаемости митохондриальной мембраны), а также 
увеличение окислительных повреждений. Для де-
фектных митохондрий был характерен разрыв 
внешней мембраны, выделение апоптогенов в цито-
плазму с последующей гибелью клеток. Описанные 
морфофункциональные модификации органелл 
при старении приводили к снижению плотности 
нейронов и усилению нейродегенерации [3]. 

Многочисленные работы подтверждают прогрес-
сирующее снижение интенсивности аутофагических 
процессов в ходе возрастной инволюции и при воз-
раст-ассоциированных заболеваниях [32–37]. 

Использование mt-Keima-зонда (мономерный 
кислотоустойчивый флуоресцентный белок, обла-
дающий сродством к митохондриальному матрик-
су) с целью количественной оценки митофагии 
в трансгенной линии мышей выявило возрастное 
снижение уровня митофагии в нейронах зубчатой 
фасции гиппокампа [33]. Сверхэкспрессия ключе-
вых маркеров PINK1–Parkin-зависимой митофагии 
в моделях старения сопровождалась увеличением 
продолжительности жизни модельных организмов 
(Drosophila melanogaster и Caenorhabditis elegans) 
[34]. Повышение содержания паркина как в ткани, 
так и в сосудах головного мозга было зафиксирова-
но в группе старых мышей (возраст 24 месяца) [35, 
36]. Установлено, что увеличение экспрессии Parkin 
позволяет снизить количество точечных мутаций 
митохондриальной ДНК, приводящих к развитию 
митохондриальной дисфункции [37].

Увеличение апоптотической гибели нейронов 
в отсутствие PINK1 доказано на клеточных моде-
лях, что подтверждает роль этого белка в выжива-
нии нервных клеток при старении [38].

Установлено, что потеря памяти в процессе ста-
рения коррелирует со снижением экспрессии генов 
Mfn1, Mfn2, Opa1, LAMP2 и LC3, при этом экспрес-

Рис. 2. Изменения процесса митофагии на стадии инициации и рецепторных взаимодействий при физиологиче-
ском старении и нейродегенеративных заболеваниях. А – старение. Характеризуется накоплением дефектных 
митохондрий и дисфункцией митофагического процесса. Прогрессирующая митохондриальная дезорганизация 
сопровождается компенсаторным увеличением уровня PINK1 и паркина. Снижение экспрессии LC3 наруша-
ет взаимодействие рецепторов фагофора и митохондрий, что приводит к угнетению митофагии. Б – болезнь 
Паркинсона. Сопровождается снижением утилизации митохондрий. При генетических формах БП выявляются 
мутации в генах, кодирующих PINK1 и паркин, что приводит к инактивации соответствующих белков. В – болезнь 
Альцгеймера. Характеризуется значительным увеличением пула дефектных митохондрий и уменьшением интен-
сивности митофагии. Накопление патологических белковых агрегатов способствует повреждению митохондрий, 
снижению уровня PINK1 и паркина, увеличению LC3 и p62. PI3P – фосфатидилинозитол-3-фосфат; p62 – убикви-
тинсвязывающий белок p62. ┴ – опосредованное влияние 
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сия генов PINK1 и Parkin повышается, что сказыва-
ется на показателях митохондриального мембранного 
потенциала. Подобные изменения в динамике экс-
прессии генов LAMP2, LC3, PINK1 и Parkin указы-
вают на дисфункцию процесса митофагии [3] (рис. 2). 

В настоящее время появляется все больше дока-
зательств того, что физическая активность является 
эффективным стимулятором аутофагии, изменяет 
динамику митохондрий, поддерживая их в рабочем 
состоянии, и в целом обладает нейропротекторным 
эффектом. Установлено, что различные виды физи-
ческих упражнений способны запускать аутофагию 
в коре головного мозга молодого или взрослого жи-
вотного и ослаблять аутофагическую дисфункцию 
в пожилом мозге. В результате недавно проведен-
ных исследований обнаружили, что физические на-
грузки повышают уровни связанных с аутофагией 
белков LC3-II/LC3-I, LC3-II, p62, Atg7, Bnip3L и пар-
кина, а также уровни Mfn2 и Drp1 [39]. Кроме того, 
Liu и соавт. показали, что изнурительные физиче-
ские нагрузки индуцируют PINK1-зависимую мито-
фагию у мышей mt-Keima [33]. 

Таким образом, баланс процессов митохондри-
альной динамики и митофагии является специ
фическим компенсаторным механизмом, играю-
щим ключевую роль в поддержании стабильного 
функционирования данных органелл в стареющем 
мозге.

МИТОФАГИЯ ПРИ НЕЙРОДЕГЕНЕРАТИВНЫХ 
ЗАБОЛЕВАНИЯХ
Процессу митофагии принадлежит важнейшая роль 
в патогенезе таких нейродегенеративных заболева-
ний, как болезни Альцгеймера (БА) и Паркинсона 
(БП), риск развития которых значительно повыша-
ется с возрастом [2].

Установлено, что ведущим патогенетическим 
звеном генетически обусловленных форм болезни 
Паркинсона являются митохондриальная дисфунк-
ция и окислительный стресс [40]. Генетические 
ранние формы БП могут быть вызваны мутация-
ми в генах PARK2 (Parkin), PINK1 и DJ-1, которые 
кодируют белки, локализованные в митохондри-
ях (рис. 2). Потеря этих белков приводит к по-
вышенной чувствительности к окислительному 
стрессу и нарушению энергетического обмена [41]. 
Установлено, что сверхэкспрессия PINK1 ингибиру-
ет трансляцию мРНК DRP1, уменьшает его транс-
локацию из цитозоля на поверхность митохондрий, 
вызывая образование удлиненных цепочечных 
митохондрий и затрудняя процесс утилизации по-
врежденных органелл. Убиквитинирование DRP1, 
связанное с PINK1, приводит к его деградации 
в протеасомах и последующей инактивации, также 

уменьшая таким образом интенсивность деления 
митохондрий [42]. При этом нокдаун PINK1 увели-
чивает фрагментацию митохондрий [43].

Поскольку PINK1 – единственная известная кина-
за, катализирующая фосфорилирование убиквитина, 
выявление S65-фосфоубиквитина может использо-
ваться для оценки активности PINK1 и рассматри-
вается как биомаркер митохондриального стресса 
и аутофагии [44]. Повреждение митохондрий приво-
дит к накоплению PINK1 в результате нарушения 
его деградации протеазой PARL (presenilin-associated 
rhomboid-like protein), локализованной на внутрен-
ней мембране митохондрий [45]. В отличие от идио-
патической болезни Паркинсона в аутопсийном мате-
риале, полученном от пациентов с мутациями PINK1 
или Parkin, тельца Леви в нейронах черной суб-
станции иногда не выявляются [46]. Предполагают, 
что это связано с участием PINK1 и Parkin в долго-
срочном выживании дофаминовых нейронов, а на-
рушение этого процесса ведет к их быстрой гибели 
без накопления патологических белков, что под-
тверждается и экспериментами с нокдауном PINK1.

В ходе исследований доказана дефектность 
и PINK1–Parkin-независимого пути, в реализа-
ции которого участвует кардиолипин [47]. Нейроны 
с мутацией SNCA , свойственной для  болезни 
Паркинсона, характеризуются более интенсивным 
переходом кардиолипина на внешнюю мембрану 
митохондрий. В свою очередь, данный фосфолипид, 
способный к рефолдингу фибрилл α-синуклеина, 
путем взаимодействия с LC3 в митохондриях уси-
ливает митофагический оборот, что приводит к ми-
тохондриальной дисфункции, осложняющейся де-
фектами митофагии. Установлено, что на ранних 
стадиях БП синаптические митохондрии утрачива-
ют кардиолипиновый кластер, что приводит к сни-
жению интенсивности процесса митофагии [47, 48]. 

В ряде исследований показали, что многообещаю-
щей мишенью для поддержания митофагии при бо-
лезни Паркинсона может быть митохондриальная 
протеиндеубиквитиназа (USP30), снижение уровня 
которой в различных моделях данного заболевания 
приводило к оптимизации функции митохондрий [5, 
49, 50].

Митохондриальная динамика и процесс ми-
тофагии нарушаются и при развитии болезни 
Альцгеймера (рис. 2). Об этом свидетельствует 
изменение экспрессии генов ATG5, Beclin1, LC3A, 
LC3B, PINK1, TERT, BCL2, BNIP3L, обнаруженное 
на мышиной модели БА [51]. 

Установлено снижение на 30–50% базального 
уровня митофагии в гиппокампе пациентов с БА, 
при этом наблюдается накопление поврежденных 
митохондрий, характеризующихся уменьшенным 
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размером, дезорганизованными кристами и сниже-
нием выработки ATP [52]. В гиппокампе пациентов 
с ранней стадией БА зафиксированы повышенные 
уровни PINK1, в то время как на поздней стадии 
увеличивается уровень паркина, что указывает 
на снижение митофагии из-за дефекта в инициа-
ции PINK1/Parkin-зависимого пути [45]. Отмечено 
также снижение рекрутирования активированного 
LC3 в мембраны фагофора, дисфункция сигнального 
каскада AMPK и нарушение слияния митофагосом 
с лизосомами [52].

В митохондриальных фракциях, полученных 
из образцов мозга пациентов с поздней стади-
ей БА, обнаружено увеличение уровня p62, повы-
шение соотношения LC3II/I и снижение уровня 
PINK1, что также указывает на сбой в митофагии 
[53]. Значительное влияние на динамику митохон-
дрий и процессы митофагии оказывает накопление 
патологических белковых агрегатов при БА. Так, 
внутрижелудочковое введение β-амилоида приво-
дило к снижению уровней PINK1, паркина и BCL-
1, а также увеличению p62 в гиппокампе крыс [54]. 
Накопление общего и фосфорилированного tau-
белка сопровождается повышением мембранного 
потенциала митохондрий, что препятствует стаби-
лизации PINK1 на наружной митохондриальной 
мембране и предотвращает рекрутирование пар-
кина. Уменьшение содержания PINK1 на внешней 
мембране митохондрий угнетает активацию парки-
на и Е3-убиквитинлигазы, что приводит к наруше-
нию последующих стадий ауто- и митофагии [55]. 
Сверхэкспрессия паркина восстанавливает митофа-
гию и митохондриальный потенциал [56]. Изменения 
митохондриальной динамики, сопровождающие раз-
витие данной патологии, заключаются в усилении 
деления органелл. Накопление токсичных tau-белка 
и β-амилоида увеличивают фосфорилирование DRP1 
и способствуют его транслокации в митохондрии [57]. 
Чрезмерная фрагментация митохондрий в конечном 
итоге вызывает гибель клеток и нейродегенерацию. 

В одном из исследований упоминалось, что изме-
нение гомеостаза ATP и NAD+ могут быть одной 
из причин нарушения митофагии при БА. Об этом 
свидетельствует тот факт, что при снижении уровня 
NAD+ в клетке запускается процесс агрегации не-
правильно свернутых белков, что способствует раз-
витию дефектной аутофагии и последующей гибели 
нейрональных клеток [11].

Стоит отметить, что при БА также снижается 
активность двух нейропротекторных генов Sirtuin1 
(SIRT1) и Sirtuin3 (SIRT3), кодирующих синтез од-
ноименных белков. Функцией сиртуина-1 является 
индукция аутофагии/митофагии посредством де-
ацетилирования белков ATG5, ATG7 и ATG8/LC3. 

Также сиртуин-1 способствует стабилизации PINK1 
и повышает уровень LC3 и Nix/BNIP3, участвую-
щих в митофагии [58]. Сиртуин-3, в свою очередь, 
активирует ген FOXO3, регулирующий апоптоз 
и аутофагию [59]. 

Следствием дефицита лизосом в тканях моз-
га, характерного для патогенеза БА, является из-
менение динамики активности лизосомальных 
ферментов. Это, в свою очередь, способствует на-
рушению резорбции аутофагических скоплений 
и также считается причиной дефектной митофа-
гии. Так, при наследственной форме БА мутации 
в гене PSEN1 (кодирует белок пресенилин 1) приво-
дят к избыточному подщелачиванию лизосомальной 
среды, патологическому снижению гидролазы лизо-
сом и увеличению уровня p62 [56].

Для многих заболеваний, включая нейродегене-
ративные, характерно избыточное накопление ко-
нечных продуктов гликирования, индуцирующих 
окислительный стресс и воспалительные процессы 
посредством выработки активных форм кислорода. 
Активные формы кислорода, в свою очередь, счита-
ются основным фактором, инициирующим стресс-
индуцированную митофагию. В постмортальных 
образцах мозга пациентов с БА обнаружено повы-
шение экспрессии рецептора конечного продукта 
гликирования [60, 61]. 

Таким образом, участие PINK–Parkin-зависимого 
пути в механизмах митофагии и его роль в пато-
генезе нейродегенеративных заболеваний изучено 
достаточно хорошо, однако ряд вопросов при этом 
остается не исследованным. Так, пристальное вни-
мание в последние годы уделяется изучению аль-
тернативных путей процесса митофагии, таких, на-
пример, как деградация компонентов митохондрий 
с использованием везикул митохондриального про-
исхождения, содержащих окисленные белки, липи-
ды, мутантную митохондриальную ДНК, активные 
формы кислорода [43]. Недавно обнаружили связь 
между везикулами митохондриального происхожде-
ния, дефектами митофагии и аутоиммунными реак-
циями, следствием которых является гибель нейро-
нов при БП [62]. 

ЗАКЛЮЧЕНИЕ
Процесс митофагии играет важную роль в поддер-
жании физиологического гомеостаза, в механиз-
мах старения и патогенезе нейродегенеративных 
расстройств. В настоящее время рассматриваются 
различные молекулы, изменяющие активность ми-
тофагии в нервной ткани, которые могут быть ис-
пользованы для разработки потенциальных средств 
для терапии нейродегенеративных заболеваний. 
В то же время, учитывая разнообразие регулятор-
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ных путей митофагии, нет сомнений в том, что этот 
перечень будет расширен за счет показателей, от-
ражающих состояние митофагии в определенных 
типах клеток нервной ткани при воздействии фак-
торов стресса различного генеза.

В целом следует отметить, что несмотря на ин-
терес к роли митофагии в возрастной инволюции 
и в патогенезе возраст-ассоциированных заболева-
ний, механизмы ее влияния на старение организма 
изучены недостаточно. К спектру нерешенных во-
просов можно отнести участие ряда регуляторных 
сигнальных молекул в координации взаимодействия 
между органеллами, особенности митохондриальной 
динамики, предваряющие митофагический процесс, 
механизмы деградации аутофагосом в условиях ми-

тохондриального стресса. Особого внимания заслу-
живают механизмы инициации (активации) класси-
ческой и рецептор-опосредованной аутофагии.

Таким образом, крайне актуальным представля-
ется дальнейшее изучение взаимосвязи между по-
тенциальными ключевыми маркерами митофагии 
и их относительным вкладом в процессы нейродеге-
нерации с целью выявления новых перспективных 
фармацевтических мишеней. 
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