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ВВЕДЕНИЕ
Онкологические заболевания остаются одной из ве-
дущих причин смерти во всем мире. По состоянию 
на 2023 г. в Российской Федерации выявлено более 
670 тысяч новых случаев злокачественных новооб-
разований, прирост данного показателя по сравнению 
с 2022 г. составил 8.0% [1]. Лучевая терапия (ЛТ) от-
носится к эффективным способам борьбы со злокаче-
ственными новообразованиями. Считается, что при-
мерно 50% онкологических больных получают ЛТ, 
при этом около 70% нуждаются в ее применении, 
причем в ряде случаев ЛТ является единственным 
методом лечения рака [2]. Основным фактором, огра-
ничивающим применение ЛТ, является отсутствие 
селективности в отношении опухолевых клеток, в ре-
зультате чего происходит нарушение метаболических 
процессов в здоровых клетках и органах с развитием 
тяжелых осложнений, в том числе с возникновением 
лучевого поражения [3]. Появление более селектив-
ных методов ЛТ не исключает токсичности по от-
ношению к здоровым тканям, поэтому активно раз-

рабатываются подходы, в которых лучевая терапия 
сочетается с системной терапией радиопротектор-
ными препаратами. Важно подчеркнуть, что зареги-
стрированные на территории Российской Федерации 
радиозащитные средства обладают серьезными по-
бочными эффектами, такими как разрыв селезенки, 
острый респираторный дистресс-синдром, альвео-
лярное кровотечение, атриовентрикулярная блокада, 
что является ограничивающим фактором их широко-
го применения [4–6]. По этой причине в настоящее 
время активно изучаются природные соединения 
на предмет их радиозащитной активности, однако 
все разработки находятся на стадии доклинических 
исследований [7, 8]. В связи с этим, поиск эффек-
тивных, низкотоксичных препаратов, защищающих 
здоровые ткани от повреждающего воздействия ио-
низирующего излучения во время проведения курса 
ЛТ, остается важной задачей радиационной онколо-
гии и радиобиологии. 

Для проведения доклинических исследований но-
вых радиозащитных средств и оптимизации стра-
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РЕФЕРАТ Лучевая терапия является одним из наиболее широко используемых видов терапии опухо-
лей. Однако применение лучевой терапии ограничивается ее токсичностью по отношению к здоровым 
тканям. Поиск эффективных радиозащитных средств остается одной из главных целей радиационной 
онкологии и радиобиологии. В данной работе радиозащитные свойства препарата «Димефосфон», об-
ладающего антиацидотическими, противоопухолевыми, антиоксидантными свойствами, изучали на жи-
вотных с экспериментальным лучевым поражением. Показано, что 14-дневное введение препарата 
в дозе 750 мг/кг после однократного облучения мышей CD-1 в дозе 5 Гр оказывает локальный радиоза-
щитный эффект, уменьшая тяжесть радиационно-индуцированного повреждения кишечного эпителия 
и капсулы селезенки. По результатам метаболомного исследования выявлено достоверное увеличение 
содержания ключевых метаболитов, отвечающих за антиоксидантные свойства, таких как альфа-то-
коферол, рибозид никотинамида, N-карбамоил-L-аспартат, аденилосукцинат, что свидетельствует о по-
вышении уровня антиоксидантной защиты под действием препарата «Димефосфон». 
КЛЮЧЕВЫЕ СЛОВА радиозащитные свойства, лучевое поражение, Димефосфон, метаболомный скрининг.
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тегий лечения различных видов опухолей необхо-
димо иметь адекватные животные модели лучевого 
поражения, которые позволяют надежно и точно 
воспроизводить основные клинические проявления 
и патогенетические механизмы развития поражения 
у человека. Ранее была продемонстрирована пригод-
ность применения излучения рентгеновского спектра 
с пиковым напряжением 320 кВ для формирования 
лучевых поражений на моделях in vivo [9].

Нами разработана методика экспериментального 
лучевого поражения лабораторных животных (мы-
шей), позволяющая оценить эффективность и без-
опасность радиозащитных средств. Для отработки 
методики в качестве радиопротекторного средства 
был выбран оригинальный отечественный препарат 
«Димефосфон». Этот препарат представляет собой 
водный раствор диметилового эфира 1,1-диметил-3-
оксобутилфосфоновой кислоты (рис. 1), он облада-
ет низкой токсичностью, высокой биодоступностью, 
легко проникает через гистогематические барьеры 
[10, 11]. 

В 1983 г. препарат в виде 15% раствора для пе-
рорального и наружного применения был одобрен 
для клинического использования в качестве анти-
ацидотического и вазоактивного средства [12–14]. 
Позднее была проведена оценка эффективности 
трех радиопротекторных соединений (масло об-
лепихи, масляный раствор Евдощенко, препарат 
«Димефосфон») при лучевой терапии рака гортани. 
Применение препарата «Димефосфон» приводило 
к наименьшим количественным различиям в тол-
щине воздушного столба гортани, характеризующей 
проявление острой лучевой реакции, до начала ЛТ 
и после получения дозы в 40 Гр [15]. 

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Животные
Все манипуляции с животными проводили в стро-
гом соответствии с законодательством РФ, реше-
нием «Об утверждении Правил надлежащей лабо-
раторной практики Евразийского экономического 
союза в сфере обращения лекарственных средств» 
от 03.11.2016 г. № 81 и положениями Директивы 
2010/63/EU Парламента ЕС и Совета Европейского 
союза от 22.09.2010 г. о защите животных, исполь-
зуемых в научных целях, и были одобрены биоэти-
ческой комиссией ЛФИ НИОХ СО РАН (протокол 
№ Р-14-2025-01-01 от 10.01.2025 г.).

Самки аутбредных мышей CD-1 массой 25–30 г 
были получены из вивария SPF Института цито-
логии и генетики СО РАН, Россия. Животных со-
держали при оптимальных условиях температу-
ры (21±1.5°C), влажности (40–60%), с 12-часовым 

циклом день/ночь со свободным доступом к воде 
и гранулированному корму. Перед экспериментами 
мышей в течение недели адаптировали к условиям 
помещения.

Исследуемое соединение
В работе использовали препарат Димефосфон® (ОАО 
«Татхимфармпрепараты», г. Казань, Россия), который 
вводили внутрижелудочно в дозе 750 мг/кг по 0.1 мл 
на 10 г массы тела. Первую дозу вводили за 3 ч 
до облучения, а затем препарат вводили однократно 
в этой же дозе каждые 24 ч в течение 14 дней.

Дизайн эксперимента и установка 
Для экспериментального моделирования лучево-
го поражения у мышей использовали рентгенов-
скую установку X-RAD 320 (Precision X-Ray Inc., 
Branford, CT, США) с фиксированным расстоянием 
от источника излучения (SSD 50 см), c фильтром 
средней жесткости (0.75 мм олово, 0.25 мм медь, 
1.5 мм алюминий). Общее облучение мышей (n = 6) 
проводили однократно в дозах 5 и 7.5 Гр при мощ-
ности дозы ~0.98 Гр/мин. Затем на 4, 7, 11 и 14 сутки 
после облучения оценивали выживаемость живот-
ных, что позволило выбрать дозу облучения для из-
учения радиозащитного действия препарата. 

На следующем этапе оценивали радиозащит-
ные свойства препарата «Димефосфон» на мы-
шах, однократно облученных подобранной дозой. 
Животных случайным образом делили на три груп-
пы (n = 8): мыши первой группы (1) получали пре-
парат «Димефосфон» в дозе 750 мг/кг (ДМФН); (2) – 
«Димефосфон» в дозе 750 мг/кг + общее облучение 
(ДМФН+ОБЛ); (3) – общее облучение (ОБЛ). 

До облучения (0 точка), а затем на 4, 7, 11 и 14 
сутки определяли массу тела животных, произ-
водили забор крови из ретроорбитального синуса 
для проведения метаболомного и гематологического 
анализа. На 14 день всех мышей умерщвляли, орга-
ны (тимус, сердце, легкие, печень, селезенка) взве-
шивали для расчета индекса их массы и забирали 
для гистологического исследования.

Гематологическое исследование
Общий анализ крови проводили с помощью автома-
тического гематологического анализатора MINDRAY 
BC-2800 Vet (Shenzhen Mindray Animal Medical 
Technology Co. Ltd., Китай). Использовали образцы 

Рис. 1. Структур-
ная формула актив-
ного вещества 
препарата «Диме-
фосфон»
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периферической крови (20 мкл), собранные в про-
бирки со стандартным количеством изотонического 
разбавителя. Определяли общее количество лейко-
цитов, эритроцитов и тромбоцитов, содержание ге-
моглобина и гематокрит.

Гистологическое исследование 
Полученный материал (тимус, сердце, легкие, пе-
чень, селезенка) взвешивали для расчета массо-
вых коэффициентов (то есть процентного отноше-
ния массы органа к массе тела), а затем селезенку 
и тонкий кишечник фиксировали в нейтральном за-
буференном формалине (10%), обезвоживали в эта-
ноле и ксилоле различных концентраций на ком-
плексе MICROM (Carl Zeiss, Германия), после чего 
образцы тканей заливали в парафин. Срезы тол-
щиной 4 мкм получали на ротационном микрото-
ме, окрашивали гематоксилином-эозином. Образцы 
исследовали на световом микроскопе при увели-
чении ×100 с предварительной настройкой света 
по Келлеру. Морфометрический анализ снимков 
гистологических препаратов и подсчет расстоя-
ния между ворсинками, длины ворсинок кишечно-
го эпителия, а также толщины капсулы селезенки 
проводили в программном обеспечении AxioVision 
для оценки степени повреждения органов. 

Метаболомный скрининг 

Пробоподготовка. Для метаболомного анализа гото-
вили образцы сухих пятен цельной крови. Аликвоту 
крови объемом 10 мкл наносили на абсорбционные 
карты Whatman 903TM (GE Healthcare, #10534612, 
США) и высушивали на воздухе при комнатной 
температуре в течение 3 ч. Образцы помещали 
на хранение при температуре -70°C до момента про-
боподготовки, которую проводили в соответствии 
с протоколом, описанным в работе [16]. Сухие пят-
на крови вырезали полностью, помещали в поли-
пропиленовые пробирки объемом 0.5 мл и добав-
ляли 150 мкл предварительно охлажденной смеси 
MeOH–ACN–H2O (40:40:20, об/об/об). Образец инкуби-
ровали при +4...+5°C в течение 20 мин, затем центри-
фугировали при 16 000 об/мин (около 24000 g, центри-
фуга Eppendorf 5417R) в течение 10 мин при +4 °C. 
Супернатант переносили в пластиковые вставки 
для хроматографических виал и анализировали. 

Анализ образцов 
Образцы анализировали методом высокоэффектив-
ной жидкостной хроматографии с тандемной масс-
спектрометрической детекцией (ВЭЖХ-МС/МС) 
согласно [17]. Хроматографическое разделение про-
водили с использованием хроматографа LC-20AD 

Prominence (Shimadzu, Япония), оснащенного авто-
дозатором SIL-20AC (Shimadzu, Япония) и термо-
статом для колонок CTO-10ASvp. Подвижная фаза 
состояла из элюента А (раствор 20 мМ карбона-
та аммония в воде, доведенный 25% водным рас-
твором аммиака до pH 9.8, и 5 об.% ацетонитрила) 
и элюента Б (100% ацетонитрил). Каждый образец 
анализировали дважды: в режимах гидрофиль-
ной (ГФХ) и обращенно-фазовой (ОФХ) хромато-
графии. Хроматографию проводили в следующих 
условиях. Градиент ГФХ: 0 мин – 98% Б, 2 мин – 
98% Б, 6 мин – 0% Б, 10 мин – 0% Б. Далее ко-
лонку уравновешивали в течение 4 мин. Градиент 
ОФХ: 0 мин – 0% Б, 1 мин – 0% Б, 6 мин – 98% 
Б, 16 мин – 98% Б. Далее колонку уравновешивали 
в течение 3 мин. Скорость потока в каждом анали-
зе – 300 мкл/мин. Объем пробы 2 мкл. Анализ в обо-
их режимах хроматографии проводили с использо-
ванием монолитной колонки (2 × 60 мм) на основе 
1-винил-1,2,4-триазола. Монолитный материал ко-
лонки был синтезирован согласно [18]: в стеклянной 
трубке с внутренним диаметром 2 мм проводили 
сополимеризацию смеси, состоящей из мономеров 
стирол/дивинилбензол/1-винил-1,2,4-триазол в объ-
емном соотношении 10 : 50 : 40 соответственно. 

Масс-спектрометрическую детекцию проводи-
ли с использованием масс-спектрометра API 6500 
QTRAP (АВ SCIEX, США), оснащенного источни-
ком ионизации электрораспылением. Детектировали 
489 метаболитов в режиме MRM (multiple reaction 
monitoring, мониторинг множественных реакций) 
в области положительной и отрицательной ио-
низации с переключением полярности. Основные 
масс-спектрометрические параметры: напряжение 
источника ионов (IS) 5500 В для положительной 
и -4500 В для отрицательной ионизации; темпера-
тура газа-осушителя – 475°C, газ в ячейке соударе-
ний (CAD) – «высокий», давление газа-распылителя 
(GS1), газа-осушителя (GS2) и газовой завесы (CUR) 
– 33, 33 и 30 фунт/дюйм2 соответственно. Потенциал 
декластеризации (DP) составлял ±91 В, потенциал 
входа (EP) ±10 В, потенциал на выходе из ячейки 
соударений (CXP) ±9 В. Время сканирования пере-
хода MRM (dwell time) – 3 мс. Управление устрой-
ством и сбор информации осуществляли с помощью 
программного обеспечения Analyst 1.6.3 (AB SCIEX). 
Переходы ионов-предшественников и фрагментных 
ионов, названия метаболитов, время фрагментации 
и соответствующие энергии столкновений адапти-
рованы из [19, 20].

Статистическая обработка данных
Статистический анализ производили с исполь-
зованием программного обеспечения Statistica 
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10.0 (StatSoft, США). Нормальность полученных 
данных проверяли с использованием критерия 
Колмогорова–Смирнова. Для выборок с нормаль-
ным распределением использовали t-критерий 
Стьюдента, при отсутствии нормального распреде-
ления U-критерий Манна–Уитни. Результаты пред-
ставлены в виде среднего ± стандартная ошибка 
среднего (M ± SEM) или среднего ± доверитель-
ный интервал для непараметрической выбор-
ки. Статистически значимыми считали различия 
при р <0.05. Графики построены с использованием 
библиотеки Seaborn (Python) и программы Origin.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Оценка выживаемости животных после 
облучения в дозах 5 и 7.5 Гр
На первом этапе исследования подбирали опти-
мальную дозу облучения для моделирования луче-
вого поражения у экспериментальных животных. 
Общее облучение животных в дозе 7.5 Гр сопро-
вождалось 100% летальностью на 11 сутки экспе-
римента (рис. 2). Таким образом была установлена 
абсолютно летальная (гибель 100% животных) доза 
облучения, последующее использование которой 
не представлялось целесообразным. После одно-
кратного облучения мышей в дозе 5 Гр на конец 
эксперимента (14 сутки) 50% животных оставались 
живыми, что соответствует сублетальной (гибель 
50% животных, LD50) дозе облучения. 

Выживаемость, средняя масса и гематологические 
показатели мышей после облучения в дозе 5 Гр 
на фоне введения препарата «Димефосфон»
На втором этапе оценивали влияние перорально-
го введения препарата «Димефосфон» на организм 
экспериментальных животных, подвергнутых одно-
кратному общему облучению в дозе 5 Гр.

Применение препарата «Димефосфон» не увели-
чило выживаемость животных после воздействия 
рентгеновского излучения (рис. 3А). На 14 сутки экс-
перимента выживаемость в группе ОБЛ составляла 
50%, в группе ДМФН+ОБЛ – около 40%, что, вероят-
но, связано с различной радиационной чувствитель-
ностью животных [21], поскольку LD50 при перораль-
ном введении препарата у мышей составляет 3 г/кг 
[10]. Кроме того, наблюдалось достоверное снижение 
средней массы облученных животных относитель-
но исходных значений без статистической разницы 
между облученными (ДМФН+ОБЛ, ОБЛ) и необлу-
ченными (ДМФН) группами (рис. 3Б). 

Согласно опубликованным данным, в развитии 
лучевого поражения выделяют три синдрома: ге-
мопоэтический (возникает при дозах свыше 1 Гр), 
желудочно-кишечный (доза от 6 до 15 Гр) и цере-
броваскулярный (доза более 20 Гр), то есть после 
воздействия ионизирующего излучения в первую 
очередь повреждаются кроветворная система, селе-
зенка, тимус, эпителий кишечника [22].

Динамика гематологических показателей в груп-
пах облученных животных была идентичной. На 4 

Рис. 2. Выживаемость мышей CD-1 после однократно-
го облучения в дозах 5 и 7.5 Гр (n = 6)
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Рис. 3. Эффект перорального введения препарата «Димефосфон» в дозе 750 мг/кг за 3 ч до и ежедневно по-
сле общего облучения в дозе 5 Гр у мышей CD-1 (n = 8, М ± SEM). А – выживаемость животных, Б – динамика 
средней массы тела животных 

В
ы

ж
ив

ае
м

о
ст

ь,
 %

М
ас

са
 т

е
ла

, 
г

Время после облучения, сут Время после облучения, сут

ДМФН

ДМФН+ОБЛ

ОБЛ

А Б
100

90
80
70
60
50
40
30
20
10

0

32

30

28

26

24

22
0	 4	 7	 11	 14 0	 4	 7	 11	 14



ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ

 ТОМ 17 № 4 (67) 2025 | ACTA NATURAE | 97

день после облучения у мышей ДМФН+ОБЛ и ОБЛ 
наблюдалась острая лейкопения, причем восста-
новление количества лейкоцитов в обеих группах 
началось на 14-й день после облучения (рис. 4А). 
Снижение количества эритроцитов было связано 
с одновременным снижением гематокрита и гемо-
глобина с 4-го по 14-й день (рис. 4В–Д). Уровень 
тромбоцитов резко снизился на 7-й день, но начал 
восстанавливаться на 14-й день после облучения. 
Введение препарата «Димефосфон» способствовало 
статистически значимому ускорению восстановле-
ния только уровня тромбоцитов на 14-й день у об-
лученных животных (рис. 4Б).

Гистологическое исследование внутренних 
органов мышей после облучения в дозе 5 Гр 
на фоне введения препарата «Димефосфон»
Воздействие рентгеновского излучения привело 
к статистически значимому изменению массово-
го коэффициента тимуса (табл. 1). Наблюдаемая 
острая инволюция тимуса (уменьшение массово-
го коэффициента более чем в 2 раза) в группах 
ДМФН+ОБЛ и ОБЛ, вероятно, связана с резким 
сокращением количества T-лимфоцитов и эпители-
альных клеток тимуса [23]. У мышей облученных 
групп также наблюдалось увеличение массового ко-

эффициента селезенки, однако эффект не был ста-
тистически значимым.

Согласно результатам гистологического иссле-
дования, мыши группы ДМФН имели типичное 
строение тонкого кишечника с нормальной длиной 
ворсинок и глубиной крипт (рис. 5В). Напротив, 
в группе ОБЛ выявлено радиационно-индуци-
рованное повреждение тонкого кишечника: де-
генерация и укорочение ворсинок, увеличение 
расстояния между ними (рис. 5А,Д). Кроме того, 
толщина слизистой тонкого кишечника была мень-
ше, чем у мышей ДМФН, ДМФН+ОБЛ (рис. 5Б). 

Рис. 4. Динамика гематологических показателей крови мышей CD-1 (n = 8, М ± SEM) под действием препарата 
«Димефосфон» после облучения в дозе 5 Гр. А – лейкоциты, Б – тромбоциты, В – эритроциты, Г – гемоглобин 
и Д – гематокрит на 4-, 7-, 11-, 14-й день после облучения. Статистический анализ проводили с использованием 
U-критерия Манна–Уитни, *p < 0.05 по сравнению с ОБЛ
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Таблица 1. Массовый коэффициент органов (%) мышей 
CD-1 после общего облучения в дозе 5 Гр (M ± SEM)

Орган ДМФН ДМФН+ОБЛ ОБЛ
Тимус 0.38 ± 0.01 0.15 ± 0.02* 0.11 ± 0.03*
Сердце 0.52 ± 0.02 0.53 ± 0.01 0.46 ± 0.02
Легкие 0.98 ± 0.07 1.05 ± 0.07 0.96 ± 0.05
Печень 5.85 ± 0.27 4.78 ± 0.60 5.34 ± 0.44

Селезенка 0.74 ± 0.11 1.18 ± 0.40 1.29 ± 0.23

Примечание.Статистический анализ проводили с ис-
пользованием U-критерия Манна–Уитни, *p < 0.05 
по сравнению с ДМФН.
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Введение препарата «Димефосфон» на фоне об-
лучения уменьшило радиационно-индуцированное 
повреждение, что проявлялось в увеличении дли-
ны ворсинок, уменьшении расстояния между ними 
и увеличении глубины крипт (рис. 5А,Г). Толщина 
слизистого слоя в группе ДМФН+ОБЛ была боль-
ше, чем в группе ДМФН, что, вероятно, связано 
с усилением процессов регенерации в кишечном 
эпителии (рис. 5Б). 

Структура селезенки животных группы ДМФН 
имела типичное строение и была образована белой 
и красной пульпой, разделенных маргинальной зо-
ной и покрытой соединительнотканной капсулой 
(рис. 6Б). На 14 день после облучения структура 
селезенки изменилась: белая пульпа расширилась 
за счет клеточной пролиферации, а четкая граница 
между красной и белой пульпой исчезла (рис. 6Г). 
Наблюдалась массивная инфильтрация красной 
пульпы лимфоцитами, которые первоначально рас-

полагались в синусоидах и селезеночных связках. 
Синусоидальные пространства стали больше, уве-
личилось их кровенаполнение. Более того, в груп-
пе ОБЛ произошло уменьшение толщины капсулы 
селезенки по сравнению с контрольной группой 
(рис. 6А), что согласуется с наблюдаемой тенденци-
ей к увеличению массового коэффициента данного 
органа (табл. 1) и является показателем сплено-
мегалии [24]. Введение препарата «Димефосфон» 
на фоне облучения не изменило структуру парен-
химы селезенки, однако способствовало восстанов-
лению нормальной толщины капсулы селезенки 
(рис. 6А,В). 

Таким образом, результаты гистологического ис-
следования позволяют предположить местную ра-
диозащитную активность препарата «Димефосфон», 
выраженную в уменьшении радиационно-индуциро-
ванного повреждения тонкого кишечника и воспале-
ния селезенки. 
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Рис. 5. Влияние препарата «Димефосфон» на повреждение тонкого кишечника мышей CD-1, вызванное облуче-
нием. А – расстояние между ворсинками, Б – толщина слизистого слоя тонкого кишечника (M ± SEM). Гистоло-
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зином, увеличение ×100. Статистический анализ проводился с использованием t-критерия Стьюдента, *p < 0.05 
по сравнению с ДМФН, #p < 0.05 по сравнению с ДМФН+ОБЛ 
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Метаболомный скрининг образцов крови мышей 
после облучения в дозе 5 Гр на фоне введения 
препарата «Димефосфон»
Проведено метаболомное исследование 489 мета-
болитов в группах ДМФН+ОБЛ и ОБЛ в ключе-
вые точки эксперимента. Алгоритм статистиче-
ского анализа включал исследование метаболитов 
между 0 и 11 днем, среди которых были выбраны 
статистически значимо различающиеся метабо-
литы. Далее проанализировали пересечения мно-
жеств и нашли метаболиты, уникальные для одной 
из групп. Обнаружены 208 метаболитов с отрица-
тельной динамикой (153 метаболита показали отри-
цательную динамику в обеих группах, 13 – только 
в группе ОБЛ, 42 – только в группе ДМФН+ОБЛ) 
и 26 метаболитов с положительной динамикой (15 
метаболитов показали положительную динамику 

в обеих группах, 5 – характерны только для ОБЛ, 
6 – для ДМФН+ОБЛ) (рис. 7). 

После облучения в группе ОБЛ произошли на-
рушения метаболизма токоферола, выраженные 
в постепенном снижении его содержания на про-
тяжении эксперимента, что делает организм чув-
ствительным к воздействию свободных радика-
лов. Из рис. 8А видно, что у животных группы 
ДМФН+ОБЛ содержание токоферола в крови 
не снижалось, в отличие от группы облученных жи-
вотных. Альфа-токоферол является мощным жи-
рорастворимым антиоксидантом, эффекты которо-
го заключаются в антиоксидантной и радиозащите 
посредством поглощения свободных радикалов [25] 
и непрямого действия на выработку определенных 
факторов роста и цитокинов [26]. Таким образом, на-
блюдаемая динамика содержания альфа-токоферо-
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Рис. 6. Влияние препарата «Димефосфон» на повреждение селезенки мышей CD-1, вызванное облучением.  
А – толщина капсулы селезенки (M ± SEM). Гистологическая картина селезенки в группах ДМФН (Б), 
ДМФН+ОБЛ (В), ОБЛ (Г). Окраска гематоксилин-эозином, увеличение ×100. Статистический анализ проводили 
с использованием t-критерия, *p < 0.05 по сравнению с ДМФН, #p < 0.05 по сравнению с ДМФН+ОБЛ
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ла может опосредованно свидетельствовать о радио-
протекторном механизме препарата.

Содержание аденилосукцината (рис. 8Б) резко 
снижается в обеих группах до 7 дня после облуче-
ния, после чего в группе ДМФН+ОБЛ происходит 
значимый рост содержания метаболита, не наблю-
давшийся в группе ОБЛ. Аденилосукцинат прини-
мает участие в рециркуляции пуринов, энергетиче-
ском гомеостазе, а также в снижении воспаления 
и других форм клеточного стресса [27]. Важно от-
метить, что содержание пуриновых метаболитов 
в крови коррелирует с устойчивостью клеток к ра-
диации, причем их экзогенное введение способству-
ет репарации двухцепочечных разрывов ДНК после 
воздействия радиации [28]. Таким образом, введе-
ние препарата «Димефосфон» компенсировало воз-
действие облучения, увеличивая содержание адени-
лосукцината в крови, что может свидетельствовать 
о способности препарата повышать устойчивость 
организма к радиационному воздействию. 

Содержание рибозида никотинамида практически 
не изменялось после облучения с небольшим подъ-
емом к 7 дню, однако введение препарата привело 
к резкому повышению содержания данного метабо-
лита в крови мышей к 4 дню, которое сохранялось 
на этом уровне до окончания эксперимента (рис. 8В). 
Рибозид никотинамида является предшественни-
ком NAD+, который выступает как кофермент мно-
гих клеточных реакций, участвующих в физиоло-

Рис. 7. Диаграммы Эйлера для метаболитов с положительной и отрицательной динамикой 
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гическом гомеостазе различных органов и систем. 
Показано, что этот метаболит влияет на течение 
острого лучевого синдрома, а его пероральное при-
менение оказывает радиопротекторный эффект, за-
ключающийся в ингибировании клеточного старения 
селезенки и нормализации профиля метаболитов 
в сыворотке крови мышей [29]. Кроме того, недавние 
исследования доказали, что предшественники NAD+ 
(в частности, рибозид никотинамида) играют реша-
ющую роль в поддержании целостности кишечного 
барьера [30]. Наблюдаемая в нашем исследовании 
положительная динамика рибозида никотинамида 
согласуется с результатами гистологического иссле-
дования и может объяснить радиопротекторный эф-
фект препарата в тонком кишечнике.

В  группе ОБЛ содержание N-карбамоил-L-
аспартата оставалось постоянным, тогда как при-
менение препарата «Димефосфон» приводило к по-
вышению его содержания на 7 и 11 дни (рис. 8Г). 
Согласно данным [31], уровень этого метаболита 
снижается в тканях кишечника мышей после одно-
кратного общего гамма-облучения. N-карбамоил-L-
аспартат представляет собой ранний интермедиат de 
novo синтеза пиримидинов, необходимого для про-
лиферации клеток и восстановления поврежден-
ной ткани. N-карбамоил-L-аспартат образуется 
при конденсации карбамоилфосфата с аспартатом, 
катализируемой аспартат-карбамоилтрансферазой. 
Повышение содержания N-карбамоил-L-аспартата 
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Рис. 8. Динамика со-
держания статистиче-
ски значимо различа-
ющихся метаболитов 
в крови мышей CD-1 
групп ДМФН+ОБЛ 
и ОБЛ. А – альфа-то-
коферол, Б – адени-
лосукцинат, В – ри-
бозид никотинамида, 
Г – N-карбамоил-L-
аспартат. Данные 
представлены в виде 
среднего ± дове-
рительный интервал 
для непараметри-
ческой выборки. 
Статистический 
анализ проводили 
с использованием 
U-критерия Ман-
на–Уитни, *p < 0.05 
между группа-
ми ДМФН+ОБЛ 
и ОБЛ, #р < 0.05 
между 0 и 11 дня-
ми в группе ОБЛ, 
&p < 0.05 между 0 
и 11 днями в группе 
ДМФН+ОБЛ

α-
То

ко
ф

е
р

о
л

А
д

е
ни

ло
су

кц
ин

ат

Время после облучения, сут

Время после облучения, сут

Время после облучения, сут

Время после облучения, сут

ДМФН+ОБЛ� ОБЛ

Ри
б

о
зи

д
 н

ик
о

ти
на

м
ид

а

N
-к

ар
б

ам
о

ил
-L

-а
сп

ар
та

т

А

В Г

Б

0	 4	 7	 11	 14 0	 4	 7	 11	 14

0	 4	 7	 11	 140	 4	 7	 11	 14

250000

225000

200000

175000

150000

125000

100000

75000

260000

240000

220000

200000

180000

160000

140000

 200000

180000

160000

140000

120000

100000

80000

70000

60000

50000

40000

30000

в группе ДМФН+ОБЛ может отражать активацию 
синтеза пиримидинов, направленного на репарацию 
эпителия, и участие этого соединения в адаптивном 
ответе на радиационно-индуцированное поврежде-
ние. Это согласуется с установленным нами восста-
новлением слизистой оболочки кишечника под дей-
ствием препарата.

В ходе исследования выявлено изменение содер-
жания альфа-токоферола, аденилосукцината, ри-
бозида никотинамида и N-карбамоил-L-аспартата. 
Установленные различия в их уровнях между 
группами ОБЛ и ДМФН+ОБЛ могут служить био-
химическими маркерами радиозащитного эффекта 
препарата. Перечисленные метаболиты участвуют 
в антиоксидантных процессах в клетках, а обнару-
женные метаболомные изменения отражают про-
цессы, которые на уровне тканей проявляются сни-
жением повреждений слизистой оболочки тонкого 
кишечника и уменьшением толщины капсулы се-
лезенки.

ЗАКЛЮЧЕНИЕ
Полученные результаты позволили выбрать дозу 
облучения и охарактеризовать основные пока-

затели поражения организма для дальнейшего 
изучения потенциально перспективных радио-
защитных средств. Также установлено, что препа-
рат «Димефосфон» уменьшает радиационно-ин-
дуцированное повреждение слизистой оболочки 
тонкого кишечника и капсулы селезенки, способ-
ствует восстановлению количества тромбоцитов 
в крови мышей CD-1 на фоне однократного об-
лучения. При этом анализ других основных гема-
тологических показателей и выживаемости жи-
вотных не выявил проявлений радиозащитного 
эффекта препарата «Димефосфон». Полученные 
данные метаболомного анализа, а именно досто-
верное увеличение содержания альфа-токоферола, 
рибозида никотинамида, N-карбамоил-L-аспартата, 
аденилосукцината в крови животных, получавших 
«Димефосфон», согласуются с результатами гисто-
логического исследования слизистой кишечника 
и селезенки и свидетельствуют о наличии антиок-
сидантной активности у препарата «Димефосфон». 

Работа выполнена при финансовой поддержке 
Российского научного фонда  

(проект № 25-25-00119).
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