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РЕФЕРАТ Токсин ProTx-I из яда тарантула Thrixopelma pruriens ингибирует потенциал-зависимые на-
триевые (NaV), калиевые и кальциевые каналы, а также хемочувствительный канал TRPA1, влияя 
на процессы их активации. Благодаря активности в отношении каналов NaV1.7, NaV1.8 и TRPA1, уча-
ствующих в восприятии и распространении болевых сигналов, ProTx-I может рассматриваться в ка-
честве модели для создания анальгетиков нового поколения. ProTx-I состоит из 35 аминокислотных 
остатков, при этом три дисульфидные связи в его структуре образуют мотив ингибиторного цисти-
нового узла, что затрудняет рекомбинантную продукцию токсина. Разработка эффективной системы 
продукции ProTx-I необходима для изучения механизма действия токсина на молекулярном уровне. 
В представленной работе мы сравнили ряд подходов к бактериальной продукции дисульфидсодержа-
щих токсинов. Цитоплазматическая экспрессия ProTx-I в составе слитого растворимого белка с тиоре-
доксином или глутатион-S-трансферазой не позволила получить правильно свернутый токсин. В то же 
время ProTx-I с природной структурой был получен в ходе «прямой» экспрессии в виде цитоплазмати-
ческих телец включения с последующей ренатурацией, а также при секреции в периплазматическое 
пространство в слитой конструкции с мальтозосвязывающим белком. Активность рекомбинантного 
ProTx-I была изучена электрофизиологическими методами на ооцитах Xenopus laevis, экспрессирующих 
каналы TRPA1 крысы и человека. Токсин показал большую активность на канале крысы, чем на ка-
нале человека (IC50 = 250 ± 70 и 840 ± 190 нМ соответственно). Также было обнаружено, что наличие 
дополнительного N-концевого остатка метионина у токсина, полученного в ходе «прямой» экспрессии, 
значительно ослабляет активность ProTx-I.
КЛЮЧЕВЫЕ СЛОВА цистиновый узел, TRPA1, токсин, влияющий на активацию, бактериальная продук-
ция, дисульфид-богатые белки.
СПИСОК СОКРАЩЕНИЙ AITC – аллилизотиоцианат; GST – глутатион-S-трансфераза; ICK – ингибитор-
ный цистиновый узел; MBP – мальтозосвязывающий белок; NaV – потенциал-зависимый натриевый 
канал; TRX – тиоредоксин; ИПТГ – изопропил-β-D-1-тиогалактопиранозид.
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ВВЕДЕНИЕ
Яды пауков – богатый источник полипептидных ток-
синов, действующих на различные мембранные ре-
цепторы и ионные каналы [1–3]. Многие токсины пау-
ков принадлежат к семейству ноттинов – небольших 
(20–50 а.о.) β-структурных пептидов, содержащих 
в своей структуре консервативный мотив «ингибитор-
ного цистинового узла» (ICK) [4], образованный тремя 
дисульфидами C1−C4, C2−C5 и C3−C6. Такая про-
странственная структура обеспечивает высокую фи-
зико-химическую и протеолитическую стабильность 
ноттинов, что делает мотив ICK перспективной ос-
новой для дизайна новых пептидных препаратов [5]. 

Среди ноттинов пауков выделяют мембранотроп-
ные токсины, влияющие на активацию или инак-
тивацию натриевых (NaV), калиевых и кальциевых 
потенциал-зависимых каналов (так называемые gat-
ing modifier toxins) [6]. Токсин ProTx-I (Protoxin-I 
или β/ω-theraphotoxin-Tp1a, 35 а.о.) – мембрано-
тропный ноттин перуанского зеленого бархатного 
тарантула Thrixopelma pruriens. ProTx-I эффек-
тивно ингибирует ряд потенциал-зависимых кана-
лов [7], а также хемочувствительный канал TRPA1 
[8]. Среди мишеней ProTx-I каналы NaV1.7, NaV1.8 
и TRPA1 являются перспективными терапевтиче-
скими мишенями для лечения боли и неврологиче-
ских воспалительных синдромов [9–11]. Изучение 
механизма действия ProTx-I на эти каналы может 
дать информацию, необходимую для создания новых 
анальгетиков и других биомедицинских препаратов.

Первым шагом, необходимым для изучения меха-
низма действия ProTx-I, а также для дизайна но-
вых вариантов этого ноттина, является разработка 
эффективной системы продукции. Традиционно не-
большие полипептидные токсины, включая ноттины 
пауков, получают методами пептидного синтеза с по-
следующей ренатурацией для формирования пра-
вильной системы дисульфидных связей [12]. Кроме 
того, рекомбинантные ноттины получают в клетках 
Pichia pastoris [12–14] и в клетках Escherichia coli 
[15, 16]. Однако при цитоплазматической продукции 
происходит накопление этих белков в виде нерас-
творимых телец включения [17, 18]. Для получения 
дисульфид-богатых токсинов в клетках E. coli при-
меняют: (1) «прямую» экспрессию с последующим 
выделением пептида из телец включения и ренату-
рацией; (2) получение в виде слитых конструкций 
с белками, способствующими замыканию дисуль-
фидных связей и повышающими уровень продук-
ции, такими как, например, тиоредоксин A (TRX) 
или глутатион-S-трансфераза (GST); (3) секрецию 
рекомбинантных пептидов в периплазматическое 
пространство E. coli, в котором происходит образо-
вание дисульфидных связей [17, 19].

Мы сравнили эти подходы к бактериальной про-
дукции ProTx-I и впервые получили корректно свер-
нутый рекомбинантный токсин, активность которо-
го охарактеризовали на каналах TRPA1 человека 
и крысы. Полученные данные показали значитель-
ную видоспецифичность ингибирующего действия 
ProTx-I, а также влияние N-концевой последова-
тельности токсина на его активность. Разработанная 
система бактериальной продукции открывает новые 
возможности для получения мутантных и мечен-
ных изотопами вариантов ProTx-I для дальнейших 
структурных и функциональных исследований.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Конструирование экспрессионных векторов
Ген ProTx-I был сконструирован на основе ами-
нокислотной последовательности P83480 из базы 
данных UniProt. Нуклеотидная последователь-
ность гена была оптимизирована с учетом ча-
стоты использования кодонов в E. coli. Векторы 
для цитоплазматической экспрессии слитых бел-
ков TRX-ProTx-I и GST-ProTx-I получены путем 
клонирования гена ProTx-I в векторы pET-32a(+) 
(Novagene, США) и pET-32a(+)/GST по сайтам KpnI/
BamHI и BamHI/HindIII соответственно. Плазмида 
pET-32a(+)/GST была получена ранее путем заме-
ны последовательности гена TRX в плазмиде pET-
32a(+) на последовательность гена GST. Вектор 
для бактериальной секреции слитого белка MBP-
ProTx-I получен путем клонирования гена ProTx-I 
по сайтам KpnI и SacI в плазмиду pLicC-MBP-
APETx2 (Addgene, #72668) [20]. Вектор для прямой 
экспрессии Met-ProTx-I получали путем клониро-
вания гена ProTx-I в вектор pET-22b(+) (Novagene) 
по сайтам NdeI и BamHI. В этом случае N-конец 
молекулы ProTx-I содержал дополнительный оста-
ток метионина, кодируемый стартовым кодоном 
ATG. Для продукции 6His-Met-ProTx-I на 5’-конец 
гена ProTx-I вставляли дополнительную последова-
тельность, кодирующую 6His-tag, и линкерную по-
следовательность, содержащую остаток метионина. 
Далее этот ген клонировали в вектор pET-22b(+) 
по сайтам NdeI и BamHI. Схема использованных 
конструкций приведена на рис. 1.

Бактериальная продукция слитых белков 
TRX-ProTx-I, GST-ProTx-I и MBP-ProTx-I 
Для получения слитых белков TRX-ProTx-I и GST-
ProTx-I штаммы E. coli BL21(DE3) и SHuffle T7 
Express (NEB) трансформировали векторами 
pET-32a(+)/TRX-ProTx-I и pET-32a(+)/GST-ProTx-I 
соответственно. MBP-ProTx-I продуцировали 
в штамме E. coli Rosetta-gami (DE3). Клетки вы-
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ращивали на среде ТВ (12 г бактотриптона, 24 г 
дрожжевого экстракта, 4 мл глицерина, 2.3  г 
KH2PO4, 12.5 г K2HPO4 на 1 л среды, pH 7.4), со-
держащей 100 мкг/мл ампициллина (Sigma, США) 
до OD600 ~ 0.6. Экспрессию индуцировали, добав-
ляя 0.1 мМ изопропил-β-D-1-тиогалактопиранозида 
(ИПТГ, Sigma). Клетки культивировали в тече-
ние 16 ч при 20°C в случае GST-ProTx-I или 72 ч 
при 13°C в случае MBP-ProTx-I и TRX-ProTx-I.

Бактериальная продукция Met-ProTx-I 
и 6His-Met-ProTx-I
Met-ProTx-I  и   6His-Met-ProTx-I  получа-
ли в штамме E. coli BL21(DE3), трансформи-
рованном векторами pET-22b(+)/Met-ProTx-I 
или pET-22b(+)/6His-Met-ProTx-I соответственно. 
Для получения Met-ProTx-I клетки выращивали 
на среде TB при 37°C до OD600 ~ 0.6 и индуцировали 
экспрессию, добавляя 0.2 мМ ИПТГ. Для получения 
6His-Met-ProTx-I клетки выращивали на среде SB 
(32 г бактотриптона, 20 г дрожжевого экстракта, 5 г 
NaCl, pH 7.4) при 37°C до OD600 ~ 6.0 и индуцировали 
экспрессию 1 мМ ИПТГ. После индукции культиви-
рование продолжали в течение 18 ч при 37°C.

Выделение и хроматографическая очистка слитых 
белков TRX-ProTx-I, GST-ProTx-I и MBP-ProTx-I
Клетки собирали центрифугированием при 10000 g 
в течение 20 мин и 4°C. Клеточный осадок ресу-
спендировали в буфере A (20 мМ Трис-HCl, 300 мМ 
NaCl, pH 8.0) в присутствии 1 мМ фенилметил-
сульфонилфторида (PMSF, Sigma). Клетки раз-
рушали ультразвуком (Branson Digital Sonifier, 
США) при выходной мощности прибора 500 Вт 
и 4ºC в течение 6 мин. Суспензию центрифугирова-
ли при 30000 g в течение 30 мин при 4°C. Очистку 
слитых белков осуществляли с помощью металл-
аффинной хроматографии на смоле Ni-Sepharose 
FastFlow (Cytiva, США), предварительно уравнове-
шенной в буфере А. Рекомбинантные белки элюиро-
вали ступенчатым градиентом концентрации имида-
зола (Macklin, Китай) от 20 до 500 мМ.

Выделение и очистка восстановленных 
Met-ProTx-I и 6His-Met-ProTx-I
Выделение сульфитированного Met-ProTx-I из цито-
плазматических телец включения и его хроматогра-
фическую очистку в денатурирующих условиях про-
водили согласно протоколам, описанным ранее [19]. 
После хроматографии Met-ProTx-I восстанавливали 
500-кратным молярным избытком дитиотреитола 
(ДТТ, Sigma). Цитоплазматические тельца включения, 
содержащие 6His-Met-ProTx-I, солюбилизировали 
в денатурирующем буфере (20 мМ Трис-HCl, 300 мМ 
NaCl, 10 мМ β-меркаптоэтанол, 8 М мочевина, pH 8.0) 
в течение 3 ч, центрифугировали и супернатант на-
носили на хроматографическую смолу Ni-Sepharose 
FastFlow, уравновешенную денатурирующим бу-
фером. 6His-Met-ProTx-I элюировали ступенчатым 
градиентом концентрации имидазола (20–500 мМ). 
Перед гидролизом с помощью BrCN (Sigma) в хрома-
тографические фракции 6His-Met-ProTx-I добавляли 
500-кратный молярный избыток ДТТ. 

Гидролиз рекомбинантных белков с помощью 
BrCN
Полученные рекомбинантные белки 6His-Met-
ProTx-I, TRX-ProTx-I, GST-ProTx-I и MBP-ProTx-I 
в концентрации 4 мг/мл гидролизовали, добавляя 
0.3 М HCl и 50-кратный молярный избыток (по от-
ношению к остаткам метионина) BrCN. Реакцию 
проводили в течение ночи в темноте при комнатной 
температуре. Затем BrCN удаляли выпариванием 
на приборе Centrivap (Labconco, США), оснащенном 
криогенной ловушкой.

Ренатурация Met-ProTx-I и ProTx-I
Ренатурацию Met-ProTx-I и ProTx-I (полученного 
в результате гидролиза 6His-Met-ProTx-I с помо-

Рис. 1. Дизайн генетических конструкций для получения 
ProTx-I в клетках E. coli. А – аминокислотная последова-
тельность токсина ProTx-I. Остатки цистеинов показаны 
желтым цветом, линиями обозначены дисульфидные 
связи. Б – схемы генетических конструкций. Сверху 
вниз: векторы для «прямой» продукции Met-ProTx-I 
и 6His-Met-ProTx-I; векторы для цитоплазматической 
продукции ProTx-I в виде слитых белков с TRX и GST; 
вектор для секреции ProTx-I в виде слитого белка с MBP. 
Зелеными галочками отмечены конструкции, с исполь-
зованием которых удалось получить рекомбинантный 
ProTx-I в структурированном виде
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Рис. 2. Анализ рекомбинантных вариантов ProTx-I методами ВЭЖХ, масс-спектрометрии и SDS-ПААГ-электро
фореза. A, Б, В – репрезентативные хроматограммы ВЭЖХ-очистки (верхняя панель) и ВЭЖХ-анализ очищенных 
вариантов ProTx-I (нижняя панель), полученных разными способами: ренатурированный Met-ProTx-I (А), ренатури-
рованный ProTx-I после гидролиза 6His-Met-ProTx-I с помощью BrCN (Б), ProTx-I после гидролиза секретируемого 
MBP-ProTx-I с помощью BrCN (В). Г–Е – MALDI-MS- спектры вариантов ProTx-I, представленных на панелях (A–В). 
В образцы, показанные на Д и Е, дополнительно добавляли токсин Phα1β. На Д и Е также наблюдаются двухзарядные 
ионы [ProTx-I+2H+] и [Phα1β+2H+]. Ж – электрофоретический анализ препаратов ProTx-I, полученных в результате 
«прямой» экспрессии: M – маркер (BioSharp BL712A); 1 – Met-ProTx-I до ренатурации; 2 – ProTx-I, полученный в ре-
зультате гидролиза 6His-Met-ProTx-I с помощью BrCN, до ренатурации; 3 – препарат с дорожки 2 после ренатурации

значение m/z (4116.9 Да, рис. 2Г), близкое к ожида-
емой моноизотопной массе [Met-ProTx-I+H+] 4116.7 
Да, соответствующей молекуле токсина с замкнуты-
ми дисульфидными связями. 

Анализ вариантов ProTx-I, полученных в ре-
зультате гидролиза 6His-Met-ProTx-I (рис. 2Д) 
или бактериальной секреции (рис. 2Е), проводили 
на спектрометре Ultraflex MALDI-TOF/TOF (Bruker, 
Германия). Для калибровки спектрометра использо-
вали продукты автолиза трипсина. Молекулярные 
массы ProTх-I – 3985.0 и 3985.9 Да, – полученные 
в обоих случаях, соответствовали расчетной моно-
изотопной массе ProTx-I (3985.7 Да, [ProTx-I+H+]) 
в пределах погрешности измерения. В обоих слу-
чаях для проверки калибровки в образцы дополни-
тельно добавляли токсин Phα1β (расчетная масса 
6029.5 Да [Phα1β+H+]), для которого были получены 
массы 6028.5 и 6029.9 Да соответственно.

ЯМР-спектроскопия
Спектры ЯМР измеряли в водном растворе (5% 
D2O, pH 4.5, 30°C), используя ЯМР-спектрометр 
AVANCE-800 (Bruker) с рабочей частотой протонов 
800 МГц. В качестве положительного контроля кор-

щью BrCN) инициировали переносом рекомбинант-
ных белков в ренатурирующий буфер (0.1 М Трис-
HCl, 2 М мочевина, 1.5 мМ GSH и 0.15 мМ GSSG, pH 
7.5) с помощью гель-фильтрации на хроматографи-
ческих колонках NAP-25 (Cytiva). Финальная кон-
центрация рекомбинантных токсинов в ренатуриру-
ющем буфере составляла 0.02 мг/мл. 

Хроматографическая очистка и анализ рекомби
нантных вариантов ProTx-I с помощью ВЭЖХ
ВЭЖХ рекомбинантных вариантов ProTx-I про-
водили на колонке Jupiter C4 (A300, 4.6 × 250 мм, 
Phenomenex) с использованием хроматографов 
Vanquish Core и Ultimate 3000 (ThermoFisher, CША). 
Токсины элюировали градиентом ацетонитри-
ла в присутствии 0.1% трифторуксусной кислоты 
при скорости потока 1 мл/мин. Полученные препа-
раты токсинов лиофилизировали. 

Масс-спектрометрия
Препарат Met-ProTх-I анализировали в рефлектор-
ном режиме детекции положительно заряженных 
ионов на спектрометре Rapiflex MALDI-TOF/TOF 
(Bruker, Германия). В результате было получено 
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ректной пространственной структуры использовали 
коммерческий препарат токсина, полученный путем 
химического синтеза (Smartox Biotechnology Inc., 
Франция).

Электрофизиологические эксперименты
Регистрацию токов через TRPA1 человека и кры-
сы [21] проводили в ооцитах X. laevis, экспресси-
рующих эти каналы. Выделение ооцитов, инъек-
ция мРНК и запись экспериментов описаны ранее 
в [22]. Все растворы готовили в день эксперимента 
на основе ND-96 без кальция, содержащего (в мМ) 
96 NaCl, 2 KCl, 1 MgCl2 и 10 HEPES при pH 7.4. 
Токи стимулировали аппликацией 100 мкМ AITC 
(Sigma-Aldrich), раствор добавляли вручную в пер-
фузионную камеру, запись токов проводили с пи-
лообразным изменением напряжения как описано 
в [22]. Для каждого ооцита последовательно запи-
сывали три ответа на аппликацию AITC, а также 
последующий ток утечки в присутствии специфиче-
ского ингибитора TRPA1 HC030031 (Sigma-Aldrich). 
Амплитуду первого ответа использовали для нор-
мирования данных, полученных на разных ооцитах. 
Для возбуждения второго ответа AITC подавали 
вместе с ProTx-I или HC030031. Амплитуду этого 
ответа измеряли, нормировали, усредняли между 
разными ооцитами и использовали для построения 
кривых доза-ответ. Кривые доза-ответ аппроксими-
ровали уравнением Хилла:

 , 

где nH – коэффициент Хилла.
Статистическую обработку результатов осущест-

вляли в программе GraphPad Prism 9.0. Для сравне-
ния амплитуд токов при определенных концентрациях 
токсина использовали либо двусторонний t-критерий 
Стьюдента, либо однофакторный дисперсионный ана-
лиз ANOVA и критерий Даннетта для множественно-
го сравнения. Сравнение параметров кривых доза-от-
вет осуществляли с помощью F-теста. 

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Продукция ProTx-I в слитой конструкции с TRX 
и GST
Для получения рекомбинантного ProTx-I были про-
тестированы пять различных подходов. ProTx-I по-
лучали в виде слитых с белками-партнерами раство-
римых белков: TRX, GST и мальтозосвязывающим 
белком (MBP), а также с шестью N-концевыми 
остатками гистидина (6His-tag) и без них в виде 
цитоплазматических телец включения (рис. 1). 
Эффективность рекомбинантной продукции токсинов 

пауков в связке с TRX и GST показана ранее [23–26], 
а эффективность продукции в виде цитоплазматиче-
ских телец включения с последующей ренатурацией 
продемонстрирована нами для ряда дисульфид-бо-
гатых белков, включая токсины из яда змей и белки 
человека семейства Ly6/uPAR [27]. 

Культивирование клеток BL21(DE3), трансфор-
мированных плазмидой pET-32a/ProTx-I, при 37°С 
приводило к получению слитого белка TRX-ProTx-I 
в нерастворимом виде, в то время как понижение тем-
пературы культивирования клеток до 13°С позволило 
получить растворимый белок с выходом 20 мг/л бак-
териальной культуры. Поскольку молекула ProTx-I 
не содержит остатки метионина, мы использовали 
BrCN для гидролиза слитого белка [28] по дополни-
тельному остатку метионина, введенному перед пер-
вым остатком ProTx-I. Анализ очищенного препарата 
ProTx-I с помощью MALDI подтвердил ожидаемую 
молекулярную массу токсина с замкнутыми ди
сульфидными связями. Однако сравнение 1Н-ЯМР-
спектров рекомбинантного токсина и коммерческого 
препарата ProTx-I выявило отсутствие корректной 
пространственной структуры у рекомбинантного 
ProTx-I (рис. 3А, Д). Использование GST в качестве 
белка-партнера также не позволило получить ProTx-I 
в структурированном виде. Эти результаты подчер-
кивают необходимость анализа пространственной 
структуры рекомбинантных токсинов, поскольку их 
получение в растворимом виде с белками-партнерами 
и с ожидаемой молекулярной массой не гарантирует 
правильного сворачивания белковой молекулы и об-
разования корректных дисульфидных связей. 

Получение Met-ProTx-I из телец включения
Ген ProTx-I содержит на 5’-конце стартовый кодон 
ATG, необходимый для инициации трансляции, по-
этому итоговый рекомбинантный продукт при его 
получении в виде цитоплазматических телец вклю-
чения содержит дополнительный N-концевой оста-
ток метионина (рис. 1Б). Для очистки Met-ProTx-I 
мы использовали ранее разработанный протокол, 
включающий солюбилизацию токсина из цитоплаз-
матических телец включения в денатурированном 
виде с остатками цистеина, химически модифи-
цированными до S-сульфоната, и последующую 
ионообменную хроматографию на смоле DEAP-
spheronite-OH [27]. Выход денатурированного Met-
ProTx-I на этой стадии составил 6 мг/л бактериаль-
ной культуры. Очищенный препарат Met-ProTx-I 
обрабатывали ДТТ для снятия S-сульфонатных 
групп с остатков цистеина, затем удаляли ДТТ 
с помощью гель-фильтрации и переносили токсин 
в буфер для ренатурации. Протокол ренатурации 
токсина был основан на протоколе, опубликованном 
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ранее для химически синтезированного ProTx-I 
[29] и сходен с используемыми нами протоколами 
для ренатурации других дисульфид-богатых бел-
ков [27]. Ренатурированный Met-ProTx-I, очищен-
ный с помощью ВЭЖХ в градиенте ацетонитрила 
(рис. 2А), имел природную структуру (рис. 3Б), од-
нако эффективность ренатурации токсина при та-
ком подходе оказалась крайне низкой. Конечный 
выход ренатурированного продукта составил всего 
~ 0.05 мг/л бактериальной культуры. 

Получение ProTx-I с природной N-концевой 
последовательностью
Низкая эффективность ренатурации Met-ProTx-I 
могла быть связана с недостаточной чистотой пре-
парата перед ренатурацией. Для повышения чисто-
ты токсина перед ренатурацией и, как следствие, 
повышения выхода ренатурированного ProTx-I 
в N-концевую последовательность ProTx-I ввели 
последовательность 6His-tag. Похожий подход ис-
пользовали ранее для рекомбинантной продукции 
других токсинов пауков [30]. Известно, что дополни-
тельные остатки в N-концевой последовательности 
токсинов могут влиять на их структуру и актив-
ность [31], поэтому для получения токсина с при-
родной N-концевой последовательностью после 
6His-tag был введен дополнительный остаток метио-
нина для последующего гидролиза с помощью BrCN 
(рис. 1Б). Выход 6His-Met-ProTx-I после очистки 
с помощью металл-хелатной хроматографии соста-
вил ~ 13 мг/л бактериальной культуры. Таким об-
разом, введение 6His-tag в N-концевую последова-
тельность позволило не только увеличить чистоту 
препарата токсина перед ренатурацией (рис. 2Ж), 
но и поднять уровень продукции токсина, что на-
ходится в согласии с нашим более ранним наблю-
дением, согласно которому N-концевая последова-
тельность может влиять на выход рекомбинантных 
белков [32]. Денатурированный препарат токсина 
6His-Met-ProTx-I гидролизовали с помощью BrCN, 
далее ренатурацию проводили аналогично препара-
ту Met-ProTx-I. Конечный выход ренатурированно-
го препарата ProTx-I с природной N-концевой по-
следовательностью составил после ВЭЖХ (рис. 2Б) 
0.3 мг/л бактериальной культуры. Таким образом, 
введение 6His-tag в молекулу ProTx-I позволило 
не только повысить продукцию токсина, но и по-
лучить пептид с природной последовательностью 
в структурированном виде, что подтверждено дан-
ными ЯМР-спектроскопии (рис. 3В). 

Секреция ProTx-I
Альтернативным способом продукции белков с кор-
ректно замкнутыми дисульфидными связями в клет-

ках E. coli является секреция в периплазматическое 
пространство [20]. Для повышения уровня продукции 
токсина использовали слитую конструкцию с MBP, 
а для секреции в периплазматическое пространство 
в N-концевую последовательность MBP вводили 
сигнальный пептид MalE [33] (рис. 1Б). Для после-
дующего отщепления ProTx-I от МВР перед по-
следовательностью токсина встраивали остаток ме-
тионина. На этом этапе мы использовали штамм E. 
coli Rosetta-gami™ (производное Origami™), хорошо 
зарекомендовавший себя для получения дисульфид-
богатых белков, включая токсины животных [34, 35]. 
Для увеличения выхода белка в растворимом виде 
мы понижали температуру культивирования клеток 
после индукции до 13°C, что позволяет замедлить 
скорость синтеза белка и способствует формирова-
нию корректно замкнутых дисульфидных связей [36]. 
Выход белка MBP-ProTx-I после очистки из суммар-
ного клеточного лизата с помощью металл-хелатной 
аффинной хроматографии составил 75 мг/л бактери-
альной культуры. Далее белок MBP-ProTx-I гидро-
лизовали с помощью BrCN, и ProTx-I с природной 
N-концевой последовательностью очищали с помо-
щью ВЭЖХ (рис. 2В). Финальный выход секретиру-

Рис. 3. 1D 1H-ЯМР-спектры вариантов ProTx-I (pH 4.5, 
30°C). А – спектр неправильно свернутого ProTx-I, 
полученного в результате продукции слитого белка 
TRX-ProTx-I и гидролиза BrCN. Б – спектр Met-ProTx-I, 
полученного в виде телец включения и последующей ре-
натурации. В – спектр ProTx-I, полученного в виде телец 
включения (конструкция 6His-Met-ProTx-I), после гидро-
лиза BrCN и ренатурации. Г – спектр ProTx-I, полученного 
в результате секреции слитой конструкции MBP-ProTx-I 
и гидролиза BrCN. Д – спектр коммерческого препарата 
ProTx-I, полученного методом химического синтеза

м.д. 
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Таблица 1. Параметры уравнения Хилла для анализа кривых ингибирования

Рецептор/токсин IC50, мкМ Коэффициент Хилла
hTRPA1/Met-ProTx-I 8.9 ± 7.0 =1.0*

hTRPA1/ProTx-I (Smartox) 0.41 ± 0.16 0.68 ± 0.24
hTRPA1/rProTx-I 0.84 ± 0.19 0.91 ± 0.18
rTRPA1/rProTx-I 0.25 ± 0.07 1.03 ± 0.26

*При анализе кривой доза-ответ для этого варианта токсина коэффициент Хилла предполагали равным 1.0. 

Рис. 4. Действие вариантов ProTx-I на направленные наружу AITC-индуцированные токи в ооцитах X. laevis, экс-
прессирующих TRPA1. A – усредненные нормированные записи токов через канал TRPA1 человека в отсутствие 
и в присутствии селективного антагониста HC030031 или ProTx-I. Данные представлены как среднее ± SEM (линии 
и затененные области соответственно, n = 3–6 ооцитов). Периоды аппликации веществ показаны горизонтальны-
ми линиями. Б – кривые доза–ответ для ингибирования TRPA1 человека рекомбинантными препаратами rProTx-I, 
Met-ProTx-I и коммерческим ProTx-I (Smartox). **(p <0.01) и ***(p <0.001) указывают на значительное отличие 
амплитуды тока между препаратом Met-ProTx-I и препаратами rProTx-I и ProTx-I (Smartox) согласно критерию 
ANOVA/Даннетт. Различие в значениях IC

50
 для соответствующих кривых, аппроксимированных уравнением 

Хилла (табл. 1), статистически значимо с p <0.0001 (F-тест). В – кривые доза–ответ для рекомбинантного препа-
рата rProTx-I в отношении TRPA1 человека (hTRPA1) и крысы (rTRPA1). Различие в значениях IC

50
 для этих кривых 

статистически значимо с p = 0.006 (F-тест). **(p <0.01) указывает на значительное отличие амплитуды токов 
на каналах крысы и человека согласно двустороннему t-тесту. Данные на Б и В (среднее ± SEM, n = 3–6 ооци-
тов) нормированы на ответ, записанный без ProTx-I (100%) 
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емого корректно свернутого ProTx-I (рис. 3Г) соста-
вил ~ 0.15 мг/л бактериальной культуры. Небольшие 
отличия в положении отдельных сигналов в ЯМР-
спектрах рекомбинантного и коммерческого токсина 
(рис. 3Г, Д) объясняются вариацией pH в образцах (в 
пределах 0.1 ед.).

N-концевая последовательность ProTx-I влияет 
на взаимодействие токсина с TRPA1
Активность химически синтезированного ProTx-I 
была показана ранее на клетках HEK293, экспрес-
сирующих рецепторы TRPA1 человека и мыши 
[8]. В настоящей работе сравнили функциональ-
ную активность Met-ProTx-I и ProTx-I, получен-
ного в результате гидролиза 6His-Met-ProTx-I, 
на канале TRPA1 человека, экспрессированного 
в ооцитах X. laevis. В соответствии с [8] обнару-
жили, что 10 мкМ рекомбинантного ProTx-I поч-
ти полностью ингибирует ток через канал TRPA1, 
индуцированный 100 мкМ ковалентного агониста 
аллилизотиоцианата (AITC) (рис. 4А). Этот эффект 
был аналогичен эффекту 50 мкМ HC030031 – селек-
тивного антагониста TRPA1 (рис. 4А). 

Сравнение кривых доза-ответ рекомбинантного 
и коммерческого ProTx-I подтвердило близкие свой-
ства препаратов (рис. 4Б, табл. 1). Параметры кривых 
(IC50 и коэффициент Хилла) статистически не разли-
чались. Однако анализ Met-ProTx-I выявил драма-
тическое статистически значимое падение активно-
сти этого варианта токсина. Так, при концентрации 
10 мкМ рекомбинантный и синтетический ProTx-I 
ингибировали токи до ~ 5%, а Met-ProTx-I только до ~ 
60 %, а значение IC50 увеличилось на порядок (рис. 4Б, 
табл. 1). Таким образом, N-концевая аминокислот-
ная последовательность токсина критически важна 
для взаимодействия с рецептором. Примечательно, 
что ранее полученные данные об активном сайте 
ProTx-I не включали N-концевые остатки [8]. 

ProTx-I ингибирует TRPA1 крысы эффективнее, 
чем канал человека 
Сравнение активности рекомбинантного ProTx-I 
на каналах TRPA1 крысы и человека выявило бо-
лее высокую активность токсина по отношению к ре-
цептору крысы (IC50 ~ 250 и 840 нМ соответствен-
но, разница в IC50 статистически значима, рис. 4В, 

табл. 1). Примечательно, что ранее проведенное 
сравнительное исследование ProTx-I на TRPA1 чело-
века и мыши, наоборот, выявило большую активность 
на канале человека [8]. Разница в действии токсина 
на рецепторы человека, крысы и мыши может объ-
ясняться значительными отличиями в аминокислот-
ной последовательности внеклеточных петель S1-S2 
и S3-S4 канала TRPA1 – основного сайта взаимо-
действия токсина [8]. Так, консервативный остаток 
Glu754 (нумерация дана для канала человека) заме-
нен у мыши на Gly, а Glu825 в канале человека – 
на Asp у крысы и Asn у мыши. Кроме того, имеются 
и другие точечные отличия. В результате в канале 
мыши два отрицательно заряженных остатка в сайте 
связывания токсина заменены нейтральными остат-
ками, что, вероятно, и ослабляет связывание поло-
жительно заряженной молекулы токсина (заряд +2). 

ЗАКЛЮЧЕНИЕ
Впервые разработана система рекомбинантной про-
дукции токсина ProTx-I. Показано, что ProTx-I 
проявляет разную активность по отношению к ка-
налам TRPA1 человека и крысы, а модификация 
N-концевой последовательности ProTx-I может 
привести к инактивации токсина. 
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