Targeted radionuclide detection of malignant tumors using affibody
- Authors: Bragina O.D.1,2, Nesynov A.A.1, Sitnikova E.Y.3, Patalyak S.V.1,3, Deyev S.M.2,4
-
Affiliations:
- Tomsk Cancer Research Institute
- National Research Tomsk Polytechnic University
- Siberian State Medical University
- Shemyakin-Ovchinnikov Institute of Biorganic Chemistry of the Russian Academy of Sciences
- Issue: Vol 17, No 4 (2025)
- Pages: 4-16
- Section: Reviews
- URL: https://journal-vniispk.ru/2075-8251/article/view/365056
- DOI: https://doi.org/10.32607/actanaturae.27677
- ID: 365056
Cite item
Abstract
This review examines the potential applications of affibody molecules in various fields of biotechnology and clinical medicine. Consideration is given to the high affinity and specificity of affibody molecules for selected molecular targets, as well as their potential for the in vivo visualization of various malignant tumors. Significant attention is paid to preclinical and clinical studies of affibody conjugates with various radioisotopes for targeted radionuclide tumor imaging, which is particularly relevant in addressing challenges encountered during the diagnosis and treatment of these patients. Clinical trials demonstrate that radiopharmaceuticals are well-tolerated and effective for the assessment of tumor process prevalence and the determination of HER2/neu status in breast cancer patients, supporting further research.
About the authors
Olga D. Bragina
Tomsk Cancer Research Institute; National Research Tomsk Polytechnic University
Email: rungis@mail.ru
ORCID iD: 0000-0001-5281-7758
SPIN-code: 7961-5918
Scopus Author ID: 57190936256
ResearcherId: E-9732-2017
Russian Federation, Tomsk, 634009; Tomsk, 634050
Alexander A. Nesynov
Tomsk Cancer Research Institute
Author for correspondence.
Email: nesynov.alex@mail.ru
ORCID iD: 0009-0000-1661-7396
Russian Federation, Tomsk, 634009
Ekaterina Yu. Sitnikova
Siberian State Medical University
Email: sitnikova_katerina00@mail.ru
Russian Federation, Tomsk, 634050
Stanislav V. Patalyak
Tomsk Cancer Research Institute; Siberian State Medical University
Email: patalyak@gmail.com
ORCID iD: 0000-0002-9468-1980
SPIN-code: 8497-1750
Scopus Author ID: 56324415300
ResearcherId: D-2358-2012
Russian Federation, Tomsk, 634009; Tomsk, 634050
Sergey M. Deyev
National Research Tomsk Polytechnic University; Shemyakin-Ovchinnikov Institute of Biorganic Chemistry of the Russian Academy of Sciences
Email: biomem@mail.ru
ORCID iD: 0000-0002-3952-0631
SPIN-code: 2562-1845
Scopus Author ID: 6603799895
ResearcherId: F-8191-2014
Russian Federation, Tomsk, 634050; Moscow, 117997
References
- Bray F, Laversanne M, Sung H, et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2024;74(3):229-263. doi: 10.3322/caac.21834
- Kaprin AD, Starinskii VV, Shakhzadova AO, eds. Zlokachestvennye novoobrazovaniia v Rossii v 2023 godu (zabolevaemost i smertnost) [Malignant neoplasms in Russia in 2023 (morbidity and mortality)]. P.A. Gertsen Moscow Oncology Research Institute; 2024.
- Cai A, Chen Y, Wang LS, Cusick JK, Shi Y. Depicting Biomarkers for HER2-Inhibitor Resistance: Implication for Therapy in HER2-Positive Breast Cancer. Cancers (Basel). 2024;16(15):2635. doi: 10.3390/cancers16152635
- Cai M, Song XL, Li XA, et al. Current therapy and drug resistance in metastatic castration-resistant prostate cancer. Drug Resist Updat. 2023;68:100962. doi: 10.1016/j.drup.2023.100962
- Wang L, Wang X, Zhu X, et al. Drug resistance in ovarian cancer: from mechanism to clinical trial. Mol Cancer. 2024;23(1):66. doi: 10.1186/s12943-024-01967-3
- Passaro A, Al Bakir M, Hamilton EG, et al. Cancer biomarkers: Emerging trends and clinical implications for personalized treatment. Cell. 2024;187(7):1617-1635. doi: 10.1016/j.cell.2024.02.041
- Chae KJ, Hong H, Yoon SH, et al. Non-diagnostic Results of Percutaneous Transthoracic Needle Biopsy: A Meta-analysis. Sci Rep. 2019;9(1):12428. doi: 10.1038/s41598-019-48805-x
- Laurent F, Montaudon M, Latrabe V, Bégueret H. Percutaneous biopsy in lung cancer. Eur J Radiol. 2003;45(1):60-68. doi: 10.1016/s0720-048x(02)00286-3
- Kemeny MM, Busch-Devereaux E, Merriam LT, O’Hea BJ. Cancer surgery in the elderly. Hematol Oncol Clin North Am. 2000;14(1):169-192. doi: 10.1016/s0889-8588(05)70283-5
- Nicolò E, Serafini MS, Munoz-Arcos L, et al. Real-time assessment of HER2 status in circulating tumor cells of breast cancer patients: Methods of detection and clinical implications. J Liq Biopsy. 2023;2:100117. doi: 10.1016/j.jlb.2023.100117
- Hou Y, Nitta H, Li Z. HER2 Intratumoral Heterogeneity in Breast Cancer, an Evolving Concept. Cancers (Basel). 2023;15(10):2664. doi: 10.3390/cancers15102664
- Hamilton E, Shastry M, Shiller SM, Ren R. Targeting HER2 heterogeneity in breast cancer. Cancer Treat Rev. 2021;100:102286. doi: 10.1016/j.ctrv.2021.102286
- Laprovitera N, Riefolo M, Ambrosini E, Klec C, Pichler M, Ferracin M. Cancer of Unknown Primary: Challenges and Progress in Clinical Management. Cancers (Basel). 2021;13(3):451. doi: 10.3390/cancers13030451
- Harms PW, Frankel TL, Moutafi M, et al. Multiplex Immunohistochemistry and Immunofluorescence: A Practical Update for Pathologists. Mod Pathol. 2023;36(7):100197. doi: 10.1016/j.modpat.2023.100197
- Lino-Silva LS, Gamboa-Domínguez A, Zúñiga-Tamayo D, López-Correa P. Interobserver variability in colorectal cancer and the 2016 ITBCC concensus. Mod Pathol. 2019;32(1):159-160. doi: 10.1038/s41379-018-0027-5
- Wu Q, Xu L. Challenges in HER2-low breast cancer identification, detection, and treatment. Transl Breast Cancer Res. 2024;5:3. doi: 10.21037/tbcr-23-48
- Rulten SL, Grose RP, Gatz SA, Jones JL, Cameron AJM. The Future of Precision Oncology. Int J Mol Sci. 2023;24(16):12613. doi: 10.3390/ijms241612613
- Langbein T, Weber WA, Eiber M. Future of Theranostics: An Outlook on Precision Oncology in Nuclear Medicine. J Nucl Med. 2019;60(S2):13S-19S. doi: 10.2967/jnumed.118.220566
- Idée JM, Louguet S, Ballet S, Corot C. Theranostics and contrast-agents for medical imaging: a pharmaceutical company viewpoint. Quant Imaging Med Surg. 2013;3(6):292-297. doi: 10.3978/j.issn.2223-4292.2013.12.06
- Klain M, Nappi C, Zampella E, et al. Ablation rate after radioactive iodine therapy in patients with differentiated thyroid cancer at intermediate or high risk of recurrence: a systematic review and a meta-analysis. Eur J Nucl Med Mol Imaging. 2021;48(13):4437-4444. doi: 10.1007/s00259-021-05440-x
- Bauckneht M, Ciccarese C, Laudicella R, et al. Theranostics revolution in prostate cancer: Basics, clinical applications, open issues and future perspectives. Cancer Treat Rev. 2024;124:102698. doi: 10.1016/j.ctrv.2024.102698
- Kasi PB, Mallela VR, Ambrozkiewicz F, Trailin A, Liška V, Hemminki K. Theranostics Nanomedicine Applications for Colorectal Cancer and Metastasis: Recent Advances. Int J Mol Sci. 2023;24(9):7922. doi: 10.3390/ijms24097922
- Song Y, Zou J, Castellanos EA, et al. Theranostics − a sure cure for cancer after 100 years? Theranostics. 2024;14(6):2464-2488. doi: 10.7150/thno.96675
- Burkett BJ, Bartlett DJ, McGarrah PW, et al. A Review of Theranostics: Perspectives on Emerging Approaches and Clinical Advancements. Radiol Imaging Cancer. 2023;5(4):e220157. doi: 10.1148/rycan.220157
- Bodei L, Herrmann K, Schöder H, Scott AM, Lewis JS. Radiotheranostics in oncology: current challenges and emerging opportunities. Nat Rev Clin Oncol. 2022;19(8):534-550. doi: 10.1038/s41571-022-00652-y
- Wei Z, Li B, Wen X, et al. Engineered Antibodies as Cancer Radiotheranostics. Adv Sci (Weinh). 2024;11(30):e2402361. doi: 10.1002/advs.202402361
- Bragina OD, Chernov VI, Garbukov EYu, et al. Possibilities of radionuclide diagnostics of Her2-positive breast cancer using technetium-99m-labeled target molecules: the first experience of clinical use. Bull Sib Med. 2021;20(1):23-30. doi: 10.20538/1682-0363-2021-1-23-30
- Tolmachev V, Vorobyeva A. Radionuclides in Diagnostics and Therapy of Malignant Tumors: New Development. Cancers (Basel). 2022;14(2):297. doi: 10.3390/cancers14020297
- Bragina OD, Deyev SM, Chernov VI, Tolmachev VM. The Evolution of Targeted Radionuclide Diagnosis of HER2-Positive Breast Cancer. Acta Naturae. 2022;14(2):4-15. doi: 10.32607/actanaturae.11611
- Luo R, Liu H, Cheng Z. Protein scaffolds: antibody alternatives for cancer diagnosis and therapy. RSC Chem Biol. 2022;3(7):830-847. doi: 10.1039/d2cb00094f
- Tolmachev V, Orlova A, Sörensen J. The emerging role of radionuclide molecular imaging of HER2 expression in breast cancer. Semin Cancer Biol. 2021;72:185-197. doi: 10.1016/j.semcancer.2020.10.005
- Shipunova VO, Deyev SM. Artificial Scaffold Polypeptides As an Efficient Tool for the Targeted Delivery of Nanostructures In Vitro and In Vivo. Acta Naturae. 2022;14(1):54-72. doi: 10.32607/actanaturae.11545
- Liu J, Cui D, Jiang Y, et al. Selection and characterization of a novel affibody peptide and its application in a two-site ELISA for the detection of cancer biomarker alpha-fetoprotein. Int J Biol Macromol. 2021;166:884-892. doi: 10.1016/j.ijbiomac.2020.10.245
- Zhu J, Kamara S, Cen D, et al. Correction: Generation of novel affibody molecules targeting the EBV LMP2A N-terminal domain with inhibiting effects on the proliferation of nasopharyngeal carcinoma cells. Cell Death Dis. 2020;11(6):494. doi: 10.1038/s41419-020-2692-9
- Liu S, Gao C, Tong Z, et al. A highly sensitive electrochemiluminescence method for abrin detection by a portable biosensor based on a screen-printed electrode with a phage display affibody as specific labeled probe. Anal Bioanal Chem. 2022;414(2):1095-1104. doi: 10.1007/s00216-021-03735-4
- Barozzi A, Lavoie RA, Day KN, Prodromou R, Menegatti S. Affibody-Binding Ligands. Int J Mol Sci. 2020;21(11):3769. doi: 10.3390/ijms21113769
- DiRusso CJ, Dashtiahangar M, Gilmore TD. Scaffold proteins as dynamic integrators of biological processes. J Biol Chem. 2022;298(12):102628. doi: 10.1016/j.jbc.2022.102628
- Ståhl S, Gräslund T, Eriksson Karlström A, Frejd FY, Nygren PÅ, Löfblom J. Affibody Molecules in Biotechnological and Medical Applications. Trends Biotechnol. 2017;35(8):691-712. doi: 10.1016/j.tibtech.2017.04.007
- Hersh J, Yang YP, Roberts E, et al. Targeted Bioluminescent Imaging of Pancreatic Ductal Adenocarcinoma Using Nanocarrier-Complexed EGFR-Binding Affibody-Gaussia Luciferase Fusion Protein. Pharmaceutics. 2023;15(7):1976. doi: 10.3390/pharmaceutics15071976
- Du W, Jiang P, Li Q, et al. Novel Affibody Molecules Specifically Bind to SARS-CoV-2 Spike Protein and Efficiently Neutralize Delta and Omicron Variants. Microbiol Spectr. 2023;11(1):e0356222. doi: 10.1128/spectrum.03562-22
- Gabriele F, Palerma M, Ippoliti R, Angelucci F, Pitari G, Ardini M. Recent Advances on Affibody- and DARPin-Conjugated Nanomaterials in Cancer Therapy. Int J Mol Sci. 2023;24(10):8680. doi: 10.3390/ijms24108680
- Cai W, Lv W, Meng L, Duan Y, Zhang L. The Combined Effect of Nanobubble-IR783-HPPH-Affibody Complex and Laser on HER2-Positive Breast Cancer. Int J Nanomedicine. 2023;18:339-351. doi: 10.2147/IJN.S387409
- Wu Y, Li H, Yan Y, et al. Affibody-Modified Gd@C-Dots with Efficient Renal Clearance for Enhanced MRI of EGFR Expression in Non-Small-Cell Lung Cancer. Int J Nanomedicine. 2020;15:4691-4703. doi: 10.2147/IJN.S244172
- Zhou H, Liu H, Zhang Y, et al. “PFH/AGM-CBA/HSV-TK/LIPOSOME-Affibody”: Novel Targeted Nano Ultrasound Contrast Agents for Ultrasound Imaging and Inhibited the Growth of ErbB2-Overexpressing Gastric Cancer Cells. Drug Des Devel Ther. 2022;16:1515-1530. doi: 10.2147/DDDT.S351623
- Pinto Salgueiro G, Yilmaz O, Nogueira M, Torres T. Interleukin-17 Inhibitors in the Treatment of Hidradenitis Suppurativa. BioDrugs. 2025;39(1):53-74. doi: 10.1007/s40259-024-00687-w
- Kerschbaumer A, Smolen JS, Ferreira RJO, et al. Efficacy and safety of pharmacological treatment of psoriatic arthritis: a systematic literature research informing the 2023 update of the EULAR recommendations for the management of psoriatic arthritis. Ann Rheum Dis. 2024;83(6):760-774. doi: 10.1136/ard-2024-225534
- Ahmadzadehfar H, Seifert R, Afshar-Oromieh A, Kratochwil C, Rahbar K. Prostate Cancer Theranostics With 177Lu-PSMA. Semin Nucl Med. 2024;54(4):581-590. doi: 10.1053/j.semnuclmed.2024.02.007
- Salih S, Alkatheeri A, Alomaim W, Elliyanti A. Radiopharmaceutical Treatments for Cancer Therapy, Radionuclides Characteristics, Applications, and Challenges. Molecules. 2022;27(16):5231. doi: 10.3390/molecules27165231
- Zhang L, Zhang H. Recent advances of affibody molecules in biomedical applications. Bioorg Med Chem. 2024;113:117923. doi: 10.1016/j.bmc.2024.117923
- Rouanne M, Radulescu C, Adam J, Allory Y. PD-L1 testing in urothelial bladder cancer: essentials of clinical practice. World J Urol. 2021;39(5):1345-1355. doi: 10.1007/s00345-020-03498-0
- Mucileanu A, Chira R, Mircea PA. PD-1/PD-L1 expression in pancreatic cancer and its implication in novel therapies. Med Pharm Rep. 2021;94(4):402-410. doi: 10.15386/mpr-2116
- Lin KX, Istl AC, Quan D, Skaro A, Tang E, Zheng X. PD-1 and PD-L1 inhibitors in cold colorectal cancer: challenges and strategies. Cancer Immunol Immunother. 2023;72(12):3875-3893. doi: 10.1007/s00262-023-03520-5
- Liang Z, Hu X, Hu H, Wang P, Cai J. Novel small 99mTc-labeled affibody molecular probe for PD-L1 receptor imaging. Front Oncol. 2022;12:1017737. doi: 10.3389/fonc.2022.1017737
- Zhao B, Li H, Xia Y, et al. Immune checkpoint of B7-H3 in cancer: from immunology to clinical immunotherapy. J Hematol Oncol. 2022;15(1):153. doi: 10.1186/s13045-022-01364-7
- Getu AA, Tigabu A, Zhou M, Lu J, Fodstad Ø, Tan M. New frontiers in immune checkpoint B7-H3 (CD276) research and drug development. Mol Cancer. 2023;22(1):43. doi: 10.1186/s12943-023-01751-9
- Oroujeni M, Bezverkhniaia EA, Xu T, et al. Evaluation of an Affibody-Based Binder for Imaging of Immune Check-Point Molecule B7-H3. Pharmaceutics. 2022;14(9):1780. doi: 10.3390/pharmaceutics14091780
- Oroujeni M, Bezverkhniaia EA, Xu T, et al. Evaluation of affinity matured Affibody molecules for imaging of the immune checkpoint protein B7-H3. Nucl Med Biol. 2023;124-125:108384. doi: 10.1016/j.nucmedbio.2023.108384
- Cai H, Li Z, Shi Q, et al. Preclinical evaluation of 68Ga-radiolabeled trimeric affibody for PDGFRβ-targeting PET imaging of hepatocellular carcinoma. Eur J Nucl Med Mol Imaging. 2023;50(10):2952-2961. doi: 10.1007/s00259-023-06260-x
- Papadopoulos N, Lennartsson J. The PDGF/PDGFR pathway as a drug target. Mol Aspects Med. 2018;62:75-88. doi: 10.1016/j.mam.2017.11.007
- Ivanova M, Porta FM, D’Ercole M, et al. Standardized pathology report for HER2 testing in compliance with 2023 ASCO/CAP updates and 2023 ESMO consensus statements on HER2-low breast cancer. Virchows Arch. 2024;484(1):3-14. doi: 10.1007/s00428-023-03656-w
- Wolff AC, Somerfield MR, Dowsett M, et al. Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: ASCO-College of American Pathologists Guideline Update. J Clin Oncol. 2023;41(22):3867-3872. doi: 10.1200/JCO.22.02864
- Giugliano F, Carnevale Schianca A, Corti C, et al. Unlocking the Resistance to Anti-HER2 Treatments in Breast Cancer: The Issue of HER2 Spatial Distribution. Cancers (Basel). 2023;15(5):1385. doi: 10.3390/cancers15051385
- Schrijver WAME, Suijkerbuijk KPM, van Gils CH, van der Wall E, Moelans CB, van Diest PJ. Receptor Conversion in Distant Breast Cancer Metastases: A Systematic Review and Meta-analysis. J Natl Cancer Inst. 2018;110(6):568-580. doi: 10.1093/jnci/djx273
- Han J, Chen Y, Zhao Y, et al. Pre-Clinical Study of the [18F]AlF-Labeled HER2 Affibody for Non-Invasive HER2 Detection in Gastric Cancer. Front Med (Lausanne). 2022;9:803005. doi: 10.3389/fmed.2022.803005
- Stewart D, Cristea M. Antibody-drug conjugates for ovarian cancer: current clinical development. Curr Opin Obstet Gynecol. 2019;31(1):18-23. doi: 10.1097/GCO.0000000000000515
- Luo H, Xu X, Ye M, Sheng B, Zhu X. The prognostic value of HER2 in ovarian cancer: A meta-analysis of observational studies. PLoS One. 2018;13(1):e0191972. doi: 10.1371/journal.pone.0191972
- Murciano-Goroff YR, Suehnholz SP, Drilon A, Chakravarty D. Precision Oncology: 2023 in Review. Cancer Discov. 2023;13(12):2525-2531. doi: 10.1158/2159-8290.CD-23-1194
- Hu X, Hu H, Li D, Wang P, Cai J. Affibody-based molecular probe 99mTc-(HE)3ZHER2:V2 for non-invasive HER2 detection in ovarian and breast cancer xenografts. Open Med (Wars). 2024;19(1):20241027. doi: 10.1515/med-2024-1027
- Swain SM, Shastry M, Hamilton E. Targeting HER2-positive breast cancer: advances and future directions. Nat Rev Drug Discov. 2023;22(2):101-126. doi: 10.1038/s41573-022-00579-0
- Dowling GP, Keelan S, Toomey S, Daly GR, Hennessy BT, Hill ADK. Review of the status of neoadjuvant therapy in HER2-positive breast cancer. Front Oncol. 2023;13:1066007. doi: 10.3389/fonc.2023.1066007
- Zimmerman BS, Esteva FJ. Next-Generation HER2-Targeted Antibody-Drug Conjugates in Breast Cancer. Cancers (Basel). 2024;16(4):800. doi: 10.3390/cancers16040800
- Baum RP, Prasad V, Müller D, et al. Molecular imaging of HER2-expressing malignant tumors in breast cancer patients using synthetic 111In- or 68Ga-labeled affibody molecules. J Nucl Med. 2010;51(6):892-897. doi: 10.2967/jnumed.109.073239
- Sörensen J, Sandberg D, Sandström M, et al. First-in-human molecular imaging of HER2 expression in breast cancer metastases using the 111In-ABY-025 affibody molecule. J Nucl Med. 2014;55(5):730-735. doi: 10.2967/jnumed.113.131243
- Sörensen J, Velikyan I, Sandberg D, et al. Measuring HER2-Receptor Expression In Metastatic Breast Cancer Using [68Ga]ABY-025 Affibody PET/CT. Theranostics. 2016;6(2):262-271. doi: 10.7150/thno.13502
- Miao H, Sun Y, Jin Y, Hu X, Song S, Zhang J. Application of a Novel 68Ga-HER2 Affibody PET/CT Imaging in Breast Cancer Patients. Front Oncol. 2022;12:894767. doi: 10.3389/fonc.2022.894767
- Alhuseinalkhudhur A, Lindman H, Liss P, et al. Human Epidermal Growth Factor Receptor 2-Targeting [68Ga]Ga-ABY-025 PET/CT Predicts Early Metabolic Response in Metastatic Breast Cancer. J Nucl Med. 2023;64(9):1364-1370. doi: 10.2967/jnumed.122.265364
- Altena R, Burén SA, Blomgren A, et al. Human Epidermal Growth Factor Receptor 2 (HER2) PET Imaging of HER2-Low Breast Cancer with [68Ga]Ga-ABY-025: Results from a Pilot Study. J Nucl Med. 2024;65(5):700-707. doi: 10.2967/jnumed.123.266847
- Bragina O, Chernov V, Larkina M, et al. Phase I clinical evaluation of 99mTc-labeled Affibody molecule for imaging HER2 expression in breast cancer. Theranostics. 2023;13(14):4858-4871. doi: 10.7150/thno.86770
Supplementary files

