Dimephosphon radioprotective properties on the model of radiation injury in vivo
- 作者: Kiseleva D.A.1, Melchenko M.A.1,2, Yarovaya O.I.1,2, Basov N.V.1,2, Rogachev A.D.1,2, Pokrovsky A.G.2, Salakhutdinov N.F.1, Tolstikova T.G.1
-
隶属关系:
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences
- Novosibirsk State University
- 期: 卷 17, 编号 4 (2025)
- 页面: 93-102
- 栏目: Research Articles
- URL: https://journal-vniispk.ru/2075-8251/article/view/365063
- DOI: https://doi.org/10.32607/actanaturae.27662
- ID: 365063
如何引用文章
详细
Radiation therapy is a commonly used cancer treatment modality. However, its application is limited because of its toxicity to healthy tissue. The search for effective radioprotective agents remains one of the key goals of radiation oncology and radiobiology. This study focuses on experimental modeling of radiation injury in animals and the investigation of Dimephosphon radioprotective properties, a drug exhibiting anti-acidotic, antitumor, and antioxidant activities. It was shown that 14-day administration of the drug at a dose of 750 mg/kg after single-dose (5 Gy) irradiation of CD-1 mice resulted in a local radioprotective effect, reducing the severity of the radiation-induced injury to the intestinal epithelium and splenic capsule. The results of metabolomic screening revealed that the levels of the key metabolites responsible for antioxidant properties such as alpha-tocopherol, nicotinamide riboside, N-carbamoyl-L-aspartate, and adenylosuccinate were significantly increased, indicating that the Dimephosphon drug provides enhanced antioxidant protection.
作者简介
Daria Kiseleva
N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences
编辑信件的主要联系方式.
Email: dasha.halikova@mail.ru
ORCID iD: 0000-0002-3932-2491
俄罗斯联邦, Novosibirsk, 630090
Maria Melchenko
N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences; Novosibirsk State University
Email: almariaand@gmail.com
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090
Olga Yarovaya
N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences; Novosibirsk State University
Email: oyar@rambler.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090
Nikita Basov
N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences; Novosibirsk State University
Email: basov@nioch.nsc.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090
Artem Rogachev
N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences; Novosibirsk State University
Email: rogachev@nioch.nsc.ru
俄罗斯联邦, Novosibirsk, 630090; Novosibirsk, 630090
Andrey Pokrovsky
Novosibirsk State University
Email: a.pokrovskii@g.nsu.ru
俄罗斯联邦, Novosibirsk, 630090
Nariman Salakhutdinov
N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences
Email: anvar@nioch.nsc.ru
俄罗斯联邦, Novosibirsk, 630090
Tatiana Tolstikova
N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences
Email: tg_tolstikova@mail.ru
ORCID iD: 0000-0002-3750-2958
俄罗斯联邦, Novosibirsk, 630090
参考
- Kaprin AD, Starinsky VV, Shakhzadova AO. State of oncologic care for the Russian population in 2023. P.A. Hertsen MORI – branch of FSBI «NMMRC» of the Ministry of Health of the Russian Federation; 2024.
- Martin OA, Martin RF. Cancer Radiotherapy: Understanding the Price of Tumor Eradication. Front Cell Dev Biol. 2020;8:261. doi: 10.3389/fcell.2020.00261
- Velsher LZ, Kosmynin AA, Byakhov MYu, Duditskaya TK, Reshetov DN. Targeted Therapy: A New Approach for the Treatment of Locally Advanced Oropharyngeal Cancer. Acta Naturae. 2012;4(1):82–85. doi: 10.32607/20758251-2012-4-1-82-85
- Dale DC, Crawford J, Klippel Z, et al. A Systematic Literature Review of The Efficacy, Effectiveness, and Safety of Filgrastim. Support Care Cancer. 2018;26(1):7–20. doi: 10.1007/s00520-017-3854-x
- Lee M, Yee J, Kim JY, et al. Risk Factors for Neutropenia and Febrile Neutropenia Following Prophylactic Pegfilgrastim. Asia Pac J Clin Oncol. 2019;15(4):231–237. doi: 10.1111/ajco.13152
- Andreassen CN, Grau C, Lindegaard JC. Chemical Radioprotection: A Critical Review of Amifostine as a Cytoprotector in Radiotherapy. Semin Radiat Oncol. 2003;13(1):62–72. doi: 10.1053/srao.2003.50006
- Mun GI, Kim S, Choi E, Kim CS, Lee YS. Pharmacology of Natural Radioprotectors. Arch Pharm Res. 2018;41(11):1033–1050. doi: 10.1007/s12272-018-1083-6
- Raj S, Manchanda R, Bhandari M, Alam MS. Review on Natural Bioactive Products as Radioprotective Therapeutics: Present and Past Perspective. Curr Pharm Biotechnol. 2022;23(14):1721–1738. doi: 10.2174/1389201023666220110104645
- Scott BR, Lin Y, Saxton B, Chen W, Potter CA, Belinsky SA. Modeling Cell Survival Fraction and Other Dose-Response Relationships for Immunodeficient C.B-17 SCID Mice Exposed to 320-kV X Rays. Dose Response. 2021;19(2):15593258211019887. doi: 10.1177/15593258211019887
- Vizel AA, Vizel AO, Shchukina LI. Dimethyl oxobutylphosphonyl dimethylate (Dimephosphone): use in pulmonology and phthisiology. Pulmonologiya. 2013;3(3):40–44.
- Maksimov ML, Malykhina AI, Shikaleva AA. Time-tested pharmacotherapy: from mechanisms to clinical efficacy. RMJ. 2020;9:71–76.
- Studentsova IA, Danilov VI, Khafizyanova RH, et al. Results of Clinical Testing of Dimephosphon as a Vasoactive Agent That Normalizes the Functions of the Nervous System. Kazanskiy Meditsinskiy Zhurnal. 1995;76(5):214–218.
- Mironov VF, Buzykin BI, Garaev RS, et al. Dimephosphone analogs: a pharmacological aspect. Russ Chem Bull. 2014;63:2114–2125. doi: 10.1007/s11172-014-0708-2
- Poluektov MG, Podymova IG, Golubev VL. Possibilities of using the drug dimephosphone in neurology and neurosurgery. Doctor.Ru. 2015; 5–6(106–107):5–10.
- Gileva TG, Lukin AV, Nyushkin AA, Agachev AR, Studentsova IA, Vizel AO. Metrology of acute radiation reaction in patients with laryngeal cancer. Kazanskiy Meditsinskiy Zhurnal. 1994;75(5):389. doi: 10.17816/kazmj90685
- Li K, Naviaux JC, Monk JM, Wang L, Naviaux RK. Improved Dried Blood Spot-Based Metabolomics: A Targeted, Broad-Spectrum, Single-Injection Method. Metabolites. 2020;10(3):82. doi: 10.3390/metabo10030082
- Basov NV, Rogachev AD, Aleshkova MA, et al. Global LC-MS/MS Targeted Metabolomics Using a Combination Of HILIC and RP LC Separation Modes on an Organic Monolithic Column Based on 1-vinyl-1,2,4-triazole. Talanta. 2024;267:125168. doi: 10.1016/j.talanta.2023.125168
- Patrushev YuV, Sotnikova YuS, Sidel’nikov VN. A Monolithic Column with a Sorbent Based on 1-Vinyl-1,2,4-Triazole for Hydrophilic HPLC. Prot Met Phys Chem Surf. 2020;56:49–53. doi: 10.1134/S2070205119060248
- Yuan M, Breitkopf SB, Yang X, Asara JM. A Positive/Negative Ion-Switching, Targeted Mass Spectrometry-Based Metabolomics Platform for Bodily Fluids, Cells, and Fresh and Fixed Tissue. Nat Protoc. 2012;7(5):872–881. doi: 10.1038/nprot.2012.024
- Li K, Naviaux JC, Bright AT, Wang L, Naviaux RK. A robust, single-injection method for targeted, broad-spectrum plasma metabolomics. Metabolomics. 2017;13(10):122. doi: 10.1007/s11306-017-1264-1
- Tairbekov MG, Petrov VM. Medical-biological effects of ionizing radiation. Moscow: MEPhI. 2005.
- Macià I Garau M, Lucas Calduch A, López EC. Radiobiology of the Acute Radiation Syndrome. Rep Pract Oncol Radiother. 2011;16(4):123–130. doi: 10.1016/j.rpor.2011.06.001
- Horie K, Namiki K, Kinoshita K, et al. Acute Irradiation Causes a Long-Term Disturbance in the Heterogeneity and Gene Expression Profile of Medullary Thymic Epithelial Cells. Front Immunol. 2023;14:1186154. doi: 10.3389/fimmu.2023.1186154
- Tripathi AM, Khan S, Chaudhury NK. Radiomitigation by Melatonin in C57BL/6 Mice: Possible Implications as Adjuvant in Radiotherapy and Chemotherapy. In Vivo. 2022;36(3):1203–1221. doi: 10.21873/invivo.12820
- Tucker JM, Townsend DM. Alpha-tocopherol: Roles in Prevention and Therapy of Human Disease. Biomed Pharmacother. 2005;59(7):380–387. doi: 10.1016/j.biopha.2005.06.005
- Singh VK, Beattie LA, Seed TM. Vitamin E: Tocopherols and Tocotrienols as Potential Radiation Countermeasures. J Radiat Res. 2013;54(6):973–988. doi: 10.1093/jrr/rrt048
- Rybalka E, Kourakis S, Bonsett CA, Moghadaszadeh B, Beggs AH, Timpani CA. Adenylosuccinic Acid: An Orphan Drug with Untapped Potential. Pharmaceuticals (Basel). 2023;16(6):822. doi: 10.3390/ph16060822
- Zhou W, Yao Y, Scott AJ, et al. Purine Metabolism Regulates DNA Repair and Therapy Resistance in Glioblastoma. Nat Commun. 2020;11(1):3811. doi: 10.1038/s41467-020-17512-x
- Li W, Wang X, Dong Y, et al. Nicotinamide Riboside Intervention Alleviates Hematopoietic System Injury of Ionizing Radiation-Induced Premature Aging Mice. Aging Cell. 2023;22(11):e13976. doi: 10.1111/acel.13976
- Niño-Narvión J, Rojo-López MI, Martinez-Santos P, et al. NAD+ Precursors and Intestinal Inflammation: Therapeutic Insights Involving Gut Microbiota. Nutrients. 2023;15(13):2992. doi: 10.3390/nu15132992
- Cheema AK, Suman S, Kaur P, Singh R, Fornace AJ Jr, Datta K. Long-Term Differential Changes in Mouse Intestinal Metabolomics after γ and Heavy Ion Radiation Exposure. PLoS One. 2014;9(1):e87079. doi: 10.1371/journal.pone.0087079
补充文件

