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Abstract. The present work is devoted to construction of the optimal interpolation formula exact for
trigonometric functions sin(wx) and cos(wx). Here the analytical representations of the coefficients of the
optimal interpolation formula in a certain Hilbert space are obtained using the discrete analogue of the
differential operator. Taking the coefficients of the optimal interpolation formula as basis functions, in
the finite element methods the boundary value problems for ordinary differential equations of the second
order are approximately solved. In particular, it is shown that the coefficients of the optimal interpolation
formula can serve as a set of effective basis functions. Approximate solutions of the differential equations are
compared using the constructed basis functions and known basis functions. In particular, we have obtained
numerical results for the cases when the numbers of basis functions are 6 and 11. In both cases, we have got
that the accuracy of the approximate solution to the boundary value problems for second-order ordinary
differential equations found using our basis functions is higher than the accuracy of the approximate solution
found using known basis functions. It is proven that the accuracy of the approximate solution increases
with increasing the number of basis functions.
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Amnunoranus. Hacrosiimast paboTa MOCBsSIIIiEHA IIOCTPOEHUIO ONTHMAABHON HHTEPIOASIIIMOHHON (DOPMYABL,
TOYHOM AASI TPUTCOHOMETPHUECKUX (pyHKImE sin(wx) u cos(wx). 3pech aHAAUTUYECKUE IPEACTABAEHUS
K03(pDUINEHTOB ONTUMAABHON UHTEPIOASIMOHHON HDOPMYALL B HEKOTOPOM TMALOEPTOBOM IIPOCTPAHCTBE
HOAYYEHBI C UCIOAB30OBAHWEM AMCKPETHOIO aHaAora Aud@epeHIIrarbHOrO omeparopa. IllpumHuUMas
B KadecTBe 6asuMCHBIX QYHKIUE KOIDUINEHTH OINTUMAABHOM WMHTEPIOASIIUOHHOE (OPMYABI, B
MeTOAAaX KOHEYHBIX JAEMEHTOB NPUOAUIKEHHO pEIIAloTCsI KpaeBble 33apaduul  AASL  OOBIKHOBEHHBIX
AurddePEHIIIAaABHEIX YPaBHEHUN BTOPOro IOPsSIAKA. B WacTHOCTH, IIOKa3aHO, dYTO KO3(DUIUEHTEL
OIITUMAABHON MHTEPIOASIINOHHON (POPMYABI MOTYT CAY>XKUTb HabopoM 3pPeKTUBHEIX HAZUCHBIX (PYHKIINIA.
[Tpubau>keHHBIE pemeHnst AUDEPEHIIAABHEIX YPAaBHEHN CPAaBHUBAIOTCSI C UCIIOAB30BaHUEM IOCTPOEHHEIX
6a3uCHBIX PYHKIWHE 1 N3BECTHBIX Oa3UCHBIX (PYHKINM. B 9acTHOCTH, MBI IOAYYUAY YUCAEHHBIE PE3YABTATH
AASI CAYYaeB, KOTAA KOAWYECTBO 6asUCHBIX (pyHKLIME paBHO 6 u 11. B 0boux cAydasix MBI MOAYYUAU, UTO
TOYHOCTb NPUOAUIKEHHOI'O PEIINEHUs KPAEBHIX 33AaY AASI OOBIKHOBEHHEBIX AUDPEPEHIINANBHEIX YPABHEHIN
BTOPOr'0 IOPSIAKA, HAAEHHOrO C IOMOIILIO HAIMMX 6a3UCHBEIX DYHKIUM, BBILIE TOYHOCTU IPUOAUIKEHHOTO
peLIeHusI, HAMAEHHOIO C WCIOAB30BAHWEM W3BECTHBIX 6a3sWCHBIX (MYHKIUA. AOKA3aHO, YTO TOYHOCTH
NIPUOAMIKEHHOI'O PEIeHUsI BO3PACTaeT C YBEAUYEHUEM YHUCAd DA3UCHEIX PYHKIUIH.

Karouesvie crosa: basucHule yHKyuY, 0bbvikHosenHoe duddeperyuaibHoe ypasHerue, Kpaesas 3a0a4a,
KOHEUHBIY 2AEMEHM, UHMEPNOAAUUA.
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1 Introduction

The finite element method is one of the effective methods in numerical solving
many differential equations encountered in science and technology. The emergence
of this method is related to the solution of problems arising in the course of
space research (1950). The finite element method was first studied by M.J.Turner,
R.W.Clough, N.S.Martin, and L.J.Topp (1956) (see [1]). After that, in 1963, R.J.Melosh
[2] theoretically developed this method and showed that it is possible to consider the
finite element method as one of the variants of the well-known Rayleigh-Ritz method.
In subsequent works, the field of application of the finite element method was further
expanded. In particular, it was argued in [3] and [4] that the finite element methods can
be easily obtained in solving structural mechanics and hydromechanics problems using
options such as the Galerkin method or the least squares method. The establishment
of this fact played an important role in the theoretical foundation of the finite element
method, as it allowed to use it in solving any differential equations. The scope of
application of the finite element methods has expanded from tension analysis in aircraft
and automobile structures to the calculation of complex systems in nuclear power plants.
It should be noted that the theoretical and practical development of the finite element
methods eliminated the need to solve many problems of physics by the variational
method. This can be seen as an achievement of the finite element methods. For more
information about the finite element methods, one can refer to [5], [6], [7] or other
interesting books.

In this work, we construct basis functions using the coefficients of the optimal
interpolation formula obtained in a certain Hilbert space and apply these basis functions
in finite element methods to approximately solve ordinary differential equations of the
second order. At the same time, we compare the accuracy of the approximate solution
found using our constructed basis functions with the accuracy of the approximate
solution found using known hat basis functions.

The rest of the paper is organized as follows. In the second section, we consider the
problem of approximate solution of the boundary value problem for the second-order
ordinary differential equation using the finite element method. In the third section,
we present the optimal interpolation formula and analytical forms of the coefficients
of the optimal interpolation formula in a certain Hilbert space. In the fourth section,
we deal with the construction of basis functions using the coefficients of the optimal
interpolation formula. In the fifth section, we apply the constructed basis functions in
finite element methods and we present numerical results.

2 The finite element method for the second order linear
differential equations

The concept of a boundary value problem for ordinary differential equations of the
second order can be stated in general as follows (see, for instance, [9]). We consider the
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second order differential equation
d du
Luz—a<pa>+qu= (x), a<x<bDb (1)
with the boundary conditions

cu(a) + Bu'(a) =v1, au(b) + pou’(b) =1vy,. (2)

The differential equation (1) with the boundary conditions (2) is called a boundary
value problem. Here p € C'[a,b] and q,f € C[a,b] and p(x) > k > 0,q(x) > 0 for x €
[a, b], k = const, «y, Bi,Vi(i = 1,2) are given numbers.

Now we deal with the approximate solution of the boundary value problem (1)-(2)
using the finite element method. We integrate (1) over the interval [a, b] multiplying by
an arbitrary function v € C'[a, b] satisfying the boundary conditions (2) and equalities
v'(a) =0, v/(b) = 0. Then using the formula of integration by parts, we get

b b
J (puv' 4+ quv) dx = vadx. (3)

It should be noted that equality (3) is in some sense equivalent to the boundary
value problem (1)-(2) (see, for example, [9] page 169).

We use equation (3) for approximately solution of the boundary value problem
(1)-(2). Let us consider the Galerkin method. Given linear independent functions
£0y &1y .y &n € C'la,b] satisfying the boundary conditions (2). In that case, the
approximate solution of the boundary value problem (1)-(2) is sought in the following
form:

Un(x) = Z c;&;(x). (4)
=0

Since the linear independent functions &;(x),i = 0,1,...,n are also elements of the
space C'[a, b] then putting u,(x) in place of u(x) in equation (3) and taking &;(x),i =
0,1,...,n as v(x) from equation (3) we get the following system of linear equations

b b
J (pul & + qun &) dx = Jf&idx, i=0,1,..,n. (5)

Taking into account (4), the system of linear equations (5) can be written in the following
form:

n
E Cli]'Cj :bi, iZO,],...,Tl
=0

or it can be written in the following matrix form
Ac = Db,

where
A= (aij)zj:o) c= (CO> ) Cn)T) b= (b0> °--)bn)T
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with

b b
Qi = J (p&{&{ + q&;&;) dx and b; = Jf&idx.

Solving the system of linear equations (5), we find the coefficients ¢;,j = 0,n and
get the approximate solution u,(x). Since the functions &y,&:,...,&n € C'la,b] are
linear independent, it follows that the symmetric bilinear form ay(i,j = 0,n) is
positive definite. This, in turn, means that the main matrix A of the system of linear
equations is positive. Therefore, the solution of the system of linear equations (5) exists
and is unique. If a basis functions are conveniently chosen, then the accuracy of the
approximation method improves as n increases. More detailed information about this
theory of finite element methods can be found, for example, in [7] and [9].

In the next section, we consider the issue of constructing an optimal interpolation
formula in a Hilbert space. In particular, we present analytical expressions of the
coefficients for the optimal interpolation formula constructed in the Hilbert space ngc)v

3 The Optimal interpolation formula in the Hilbert space

First, let’s focus on the issue of construction of an optimal interpolation formula. The
problem of constructing an optimal interpolation formula was first posed and studied
by S.L. Sobolev in the space Wz(m) (see [12]). The problem of construction of optimal
interpolation formulas in different Hilbert spaces was considered in the works [13]- [16].

Let the values @(xo), @(x1), ..., @(xn) of the function @(x) at the points xg, X1y ..., XN
of the mesh 0 < xy < X1 < ... < xny < 1 be given. Here we consider the problem of
approximating the function ¢(x) in a certain Hilbert space H as follows:

@ (x) = Py, (x) for x € [0,1], (6)

where N
Po(x) =Y Cp(x) e (xp)
B=0
and it is the approximating function, Cs(x), 3 = 0, N are its coefficients.
If the approximate equality (6) satisfies the conditions

(P(XB) = P(p(xfi)) B = O>N

then the function P,(x) is called the interpolation function.
The difference

(£, @) = @(z) = Py(2)
at the fixed point x =z (z € [0, 1]) is called the error of the approximating formula (6)

at the point z. Here { is the error functional of the interpolation formula (6), which is
defined as follows

U(x,z) =8(x —z) — Cp(z)0(x —xp), (7)

=
HI\/]Z
o
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where 6(x) is the Dirac delta-function.
One of the main problems of the approximation theory is to obtain an upper estimate
of the error for the interpolation formula. According to the Cauchy-Schwarz inequality

(6, @)l < |12

the error of the approximating formula (6) is estimated using the norm of the error
functional { in the conjugate space H*.
In addition, the error functional (7) depends on the coefficients Cg(z) of the

H* <P||H

approximation formula (6). If

¢l| = inf [€,.
i, = g 1
the least value is achieve at some Cg(z) = Cp(z) then the corresponding formula is
called the optimal approximation formula. The coefficients of the optimal approximation
formula are called optimal coefficients.
We suppose that functions ¢(x) belong to the following Hilbert space

)

nggv = {(p :[0,1] — R|p’ is absolutely continuous and ¢” € L,(0, 1)},

equipped with the norm

=

1
2
ol = J((P"(X)erch(x)) ax |
0

where w € R\ {0} (see, for instance, [11]).

The optimal interpolation formula of the form (6) in the Hilbert space K
constructed in the work [27]

The following rusult was obtained.

2)

2w was

Theorem 1. In the Hilbert space ngc)v the coefficients of the optimal interpolation
formula

z

@(x) =Py(x) =) Cp(x)o(hp)
B=0
are represented as follows

N
A
Cox) =p [ 5= ) _AJGy(x—hy)+CG, (x) + G2 (x — h)
X
. h
+p (— sin (wh) d; + cos (wh) d; — 27 08 (wh + wx)) +pA; (My +ANy), (8)

N
Cp (%) w(—ZA'ﬁ‘VGz (x—hy) + Gy (x —h (B —1)) + CG; (x — hp)

v=0

+ G, (x—h([3+1))> T PA, (A?Nh +A§“—BN1), B=1,2..,N—1, (9
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A1

y=0

N
Cn(x)=p (EZM\’sz(x—hy)—l—CGz(x—])—l—Gz(x—] +h)>

14+h
+p (sin(wh+w)dT-i—cos(wh—i—w)dj— il

102 cos (wh+ w — wx))

+pA1 ()\?‘M] +N]), (10)

where
_ ket — kit art; —aty
- 4 =—= =G T =F—t dr
d] aq kz — (12k1 ’ ! a; kz — (12k1 ’ dz Z(X)’ dz an(w) P
here
Gy(x—1) cos(w — wx) sign(x) [ .
F c08(®] 2ol cos(w) Gy(x) = R sin(wx) — wxcos(wx) |,
_ 2w3 A (2wh)?sin*(wh)A
Po= sin(wh) — whcos(wh)’ "7 (sin(wh) — whcos(wh))2(A2 —1)’
| _ 2wh—sin(2wh) - 2sin(wh)/(wh)? — sin(wh) o 2whcos(2wh) — sin(2wh)
‘l pu— y pu—

2(whcos(wh) —sin(wh)) sin(wh) — whcos(wh)

A, sin(wh) - AN sin(wh)
A(T+2A2 =2\ cos(wh))’ 2 14 A2 — 2\ cos(wh)’

a; = —Csin(wh)—sin(2wh)—

AN sin(wh)

Ky =
" cos(w)(1 + A? — 2\; cos(wh))’
_ Csin(wh) + sin(2wh) n Ajsin(wh)
2T cos(w) A1 cos(w) (T + A2 — 2A; cos(wh))’

h
t = A0l (C cos(wx + wh) + 2 cos(wx + 2wh)

A cos(wx + wh) — 2A; cos(wx) + Af cos(wx — wh)
A (1+ A2 — 2A; cos(wh))?

A cos(wh) — A

—G 1+C h 2wh —
z(x)< + Ccos(wh) + cos(2wh) + N+ N 2N cos(wh))
cos(wh + w) — A COS(UU)+ h
1+ A3 — 27\ cos(wh) 4w

N
— A1) NGilx—hy) —ANTF

=0

2A17\]1\]+]Q)
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h N41€O8
tz == WA])\]

(wx + wh) — 2A; cos(wx) + A} cos(wx — wh)
(14 A — 2\ cos(wh))?
cos(wh) — A4
1+ A2 — 2A; cos(wh)

— A] 7\‘1\I+] Gz (X)

N
—Ga(x—1) =AY ) A"Gy(x —hy)
v=0

_ F(C cos(wh + w) + cos(2wh + w) + Aj cos(wh 4+ w) — A cos(w)>

At 1T+ A2— 27 cos(wh)

h A
+ iw? (C(] + N) cos(wh + w — wx) + (2 + N) cos(2wh + w — wx) + }\—]Q>)
1

_ cos(w — wx + wh) — 2A; cos(w — wx) + A?cos(w — wx — wh)

Q= (1 4+ A2 — 2A; cos(wh))?
cos(w — wx + wh) — Ay cos(w — wx)
h(1 + A — 2A; cos(wh)) ’
sin(wh) _ cos(wh) — Ay _
M =— 2 1 2 2
1+ A7 — 2A; cos(wh) 1+ A7 — 2A; cos(wh)
_h cos(wx 4 wh) — 2\ cos(wx) + A7 cos(wx — wh)
4?2 (1 4+ A2 — 2A; cos(wh))? ’
sin(wh 4+ w) — Aysin(w) ., cos(wh + w) — Ay cos(w) | h
N] - i d] + 2 dz - _ZQ.
1+ A7 — 2\ cos(wh) 1+ A7 — 2\ cos(wh) 4w

In the next section we give three sets of basis functions.

4 Basis functions

In this section, we present a set of known hat basis functions, and we also construct
basis functions using the coefficients of the optimal interpolation formula presented in
Theorem 1. At the same time, we describe the properties of these basis functions, draw
their graphs, and provide the necessary information to apply these basis functions to
finite element methods.

It is known that the interval [0, 1] can be translated by linear transformation into
any interval [a,b]. To simplify calculations, we consider the interval [0, 1] to be the
interval [a, b].

4.1 The hat basis functions

It is known that in linear spaces there is always a system of linear independent
elements. This system of linear independent elements is considered as the basis of the
space. The elements that make up the basis, depending on the linear space, are called
basis functions or basis vectors.
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Clearly, the hat basis functions corresponding to the partition 0 = zy < z1 < ... <
z, =1,z =it,1 = lei =0, 1,...,n of the interval [0, 1] have the following form (see,
for example, [10], pp. 714-715):

EL oz < x < z4
No(x) = ¢ zo7=? "7 — 7 =70 11
o(x) {0, z1<x <1, (11)

O> X < Zi,

X—zi_1

— Zi1 <x <z )
Alx) = ¢ Sz Voi=1,2,.,m-1), (12)
y Zi <X < Zig,

Zi—Zi+1

O» ZiH1 S Xy

0, zo <X < 2zp1y
AMmx)=< .= 13
" {%_ZT“H_‘],%1§X§Z“. (13)

The graphs of the hat basis functions A;(x)(i =0, 1,...,n) are shown in figure 1.

17 17 1
0.84 0.84 0.8
0.6 0.67 0.6
A (x) A (x) A (x)
0 i n

0.4 0.44 0.4
0.2 0.29 0.2

0 0 0 !

0 02 04 06 08 1 0 02 04 06 0S8 1 0 02 04 06 08 1

X X X

Fig. 1. The graphs of the hat functions Ao(x), Ai(x),i =1,2,...,n—1 and A,(x) (from
the left to the right).

Here are the first-order derivatives of the hat basis functions Ai(x)(i =1,...,n—1)
above is determined by the equation

0, x < zi_y,
y Zio1 < x < zy,
y Zi <X < Zig,

1
)\/(X) — Zi*]Zi—l
Zi—Zi+1

0, ziy1 < x.

(14)

It can be seen that the hat basis functions Ai(x)(i = 0,1,...,n) are continuous in
the interval [0, 1], and its first-order derivatives A/(x)(i = 0,1,...,n) have a first-order
discontinuity in the interval [0, 1].

When we approximately solve the above boundary value problem (1) — (2) using the
hat basis functions A;(x)(i =0, 1,...,n), we take approximate solution as follows

un(x) = ) chi(x). (15)
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4.2 Construction of basis functions using optimal coefficients

At this stage, based on equations (8)—(10) we present an analytical representation of
the coefficients for N = 1. Then we construct a set of basis functions using the analytical
representation of the coefficients.

For N = 1(xo = 0,%; = 1), from equations (8)-(10) we have the following:

Colx) = sin(wx — wx7) Clx) = sin(wx — wxo) xe o1, (16)

= — y Uy = —
sin(wxg — wxq) sin(wx; — wxp)

The graphs of the coefficients Cy(x) and C;(x) are presented in figure 2.

17 17
0.81 0.8
0.6 0.6
Co(x) C1 (x)
0.4 0.4
0.2 0.2
0 ————————— 0 —————————————t
0 02 04 06 08 1 0 02 04 06 08 1
x x

Fig. 2. The graphs of coefficients Cy(x) and C;(x) defined by (16)(from the left to the
right).

Now, using the coefficients Cy(x) and C;(x) as the shape functions on the interval
[0, 1], we construct a set of basis functions pi(x) (i = 0,1,...,1). Here we consider the
interval [0, 1] to be divided by 0 = zy < z1 < ... < z, = 1, where z; = i1, T = le
i=0,1,...,n.

The first function py(x) has the following form

sin(wx—wz1)

STl 7y <x <z

x) = sin(wzo—wz1)? ) 17

Holx) {O)Z1SX§]) ( )

Then using the shape functions (11) for the intervals (z; 1,zi) and (zi,zi,1) we
describe the functions pi(x),i=1,2,....,n— 1 as follows

0} Zo <x < Zi—1,

_ %» zi 1 < x < zi,

l»li(X) - sin(wx—wzi41) < <. (18)
Sn(wzi—wzisg)) AL S XS Zi,

0, ziy1 <x <1,

Finally, we express w,(x) by the following equality

0 Z0 S X S Zn1
Hn(x) = s)in(wxfwzn,l) ’ << (19)
alor ey zn g < x < 2y,
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Fig. 3. The graphs of the functions py(x), wi(x),i=1,2,...,n —1 and p,(x) (from the
left to the right).

The graphs of the basis functions p;i(x)(i =0,1,...,1) are shown in figure 3.
It is easy to check that the functions pi(x),i = 0,1,...,1 are independent on the
interval [0, 1].
The first-order derivatives of the basis functions p;(x),i = 1,...,n—1 are determined
by the equation
0, zo <x <z,

w cos(wx—wzi_1)
u/( ) — sin(wzi—wzi_1)
1 wcos(wx—wzi+1), Z <x < Zii1,

sin(wzi—wzi41)

0, zin <x < 1.

zi1 <x <z, (20)

It can be seen that the basis functions p;(x)(i = 0,1,...,n) are continuous in the
interval [0,1], and its first-order derivatives p{(x)(i = 0,1,...,n) have a first-order
discontinuity in the interval [0, 1].

When we approximately solve the above boundary value problem (1)-(2) using the
basis functions ;(x)(i =0, 1,...,n), the approximate solution we get as follows

M(x) = Z dipi(x). (21)
i—0

4.3 The optimal coefficients as basis functions

At this stage, using Theorem 1, we get the coefficients of the interpolation formula
constructed above as basis functions. From Theorem 1 for N = n we get

vi(x) = Ci(x), 1=0,1,...,m, (22)

where Cy(x), Ci(x),i = I,n—1 and C,(x) are defined by equations (8), (9) and (10),
respectively.

The graphs of the basis functions v;(x)(i =0, 1,...,n) are shown in figure 4.

When we approximately solve the above boundary value problem (1)-(2) using the
basis functions v;(x)(i =0, 1,...,n), we get the approximate solution as follows

wa(x) =) evi(x). (23)
i=0
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Fig. 4. The graphs of the functions vy(x), vi(x),i = 1,2,...,n — 1 and v,(x) given by
formula (22)(from the left to the right).

It should be noted that various geometric curves and surfaces, as well as Bezier
curves [17], [18], [19], trigonometric B-splines [18], [20], [21] can be generated using the
basis functions p;(x)(i =0,1,...,n) and v;(x)(i =0, 1,...,n).

In the next section, we consider the application of these basis functions to the
solution of the boundary value problems for second-order ordinary differential equations
using finite element methods.

5 Numerical Results

In this section, we approximately solve the boundary value problems for ordinary
differential equations of the second order using the Galerkin method, applying the basis
functions constructed above.

Example 1. (Example 3 a), 726 p., [10]) Solve the following boundary value problem
using the Galerkin method:

—x*u” — 2xu’ 4 2u = —4x%, u(0) = u(1) =0. (24)

It is known that this boundary value problem has an exact solution u(x) = x? — x.

Case 1. In this case, we approximately solve the boundary value problem (24) using
basis functions Ai(x)(i = 0,1,...,n). Since the boundary conditions in the boundary
value problem (24) are homogeneous, the approximate solution has the form

n—1
U (x) = ) cilx).
i=1

The absolute value of the error for the approximate solution u,(x) is presented in
figure 5.

Case 2. In this case, we approximately solve the boundary value problem (24) using
basis functions pi(x)(i = 0,1,...,n). Since the boundary conditions in the boundary
value problem (24) are homogeneous, the approximate solution has the form
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0.0025+
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Fig. 5. The graphs of the error [u(x) —u,(x)| for n =5 (on the left) and n = 10 (on
the right), respectively (for the boundary value problem (24)).

The absolute value of the error for the approximate solution 9, (x) is presented in
figure 6.

0.0091 0.0025]
0.0081
0.0071 0.0020- ”
0.006 ﬂ
00151
ju(x) =9 (x)] 0.005, [u(x) =9, (x) 0.0015
0.004
0.0010~”
0.0031
0.0021 0.0005 U ﬁ
0.0011 U N ﬂ
ol 111 1 o ——ALHLIZIL
0 02 04 06 08 1 0 02040608 1
X X

Fig. 6. The graphs of the error [u(x) —9,(x)| for n =5 (on the left) and n = 10 (on the
right), respectively (for the boundary value problem (24)).

Case 3. Finally, we approximately solve the boundary value problem (24) using basis

functions v;(x)(1 =0, 1, ..., n). If we take into account that the boundary conditions here
are also homogeneous, the approximate solution of the boundary problem has the form

n—1
wn(x) = Z e;vi(x).
i=T
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The absolute value of this approximate solution error w,(x) is presented in figure

0.0010~m

0.004
0.0008

0.003
0.0006

u(x) —o (x)| u(x) —o (x
n n
0.002 0.0004
0.001 1 0.0002
R L R
0 0204 0608 1 0 02040608 1
X X

Fig. 7. The graphs of the error |u(x) — wy,(x)| for n =5 (on the left) and n = 10 (on
the right), respectively (for the boundary value problem (24)).

The following conclusions can be done from these numerical results:

i) In the first two cases, the order of approximation of the approximate solution is
the same.

ii) Effective basis functions can be formed even when N = 1 in equations (8)-(10).

iii) Accuracy of the approximate solution found using basis functions v;(x)(i =
0,1,...,m) is better than the accuracy of the approximate solution found using basis
functions Ai(x) (1=0,1,...,n) and wi(x) (i=0,1,...,n).

It should be noted that using the above basis function one can approximately
calculate definite integrals and construct B— splines as well as they can be applied
for construct various geometric curves.

6 Conclusion

This paper briefly reviews the history of the emergence and development of finite
element methods. At the same time, the essence of the finite element method was
clarified and the objects of study were mentioned. As the main result of the work, we
can say that the set of basis functions is constructed from the coefficients of the optimal
interpolation formula constructed in the Hilbert space nggu with N = 1 and arbitrary
N € N, and these basis functions are applied to boundary value problems of the finite
element method for ordinary differential equations of the second order, approximately
solved and numerical results obtained. In addition, it was shown that the accuracy
of the approximate solution for arbitrary N € N is better than the accuracy of the

approximate solution for N = 1 and it was proven that the order of approximation of
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the approximate solution found using the basis functions we constructed is the same

as the order of approximation of the approximate solution found using the hat basis

functions.
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