On perturbations of algebraic periodic automorphisms of a two-dimensional torus
- Авторлар: Grines V.Z.1, Mints D.I.1, Chilina E.E.1
-
Мекемелер:
- Higher School of Economics
- Шығарылым: Том 24, № 2 (2022)
- Беттер: 141-150
- Бөлім: Mathematics
- ##submission.dateSubmitted##: 30.12.2025
- ##submission.dateAccepted##: 30.12.2025
- ##submission.datePublished##: 12.01.2026
- URL: https://journal-vniispk.ru/2079-6900/article/view/363782
- DOI: https://doi.org/10.15507/2079-6900.24.202202.141-150
- ID: 363782
Дәйексөз келтіру
Толық мәтін
Аннотация
According to the results of V. Z. Grines and A. N. Bezdenezhnykh, for each gradient-like diffeomorphism of a closed orientable surface M² there exist a gradient-like flow and a periodic diffeomorphism of this surface such that the original diffeomorphism is a superposition of a diffeomorphism that is a shift per unit time of the flow and the periodic diffeomorphism. In the case when M² is a two-dimensional torus, there is a topological classification of periodic maps. Moreover, it is known that there is only a finite number of topological conjugacy classes of periodic diffeomorphisms that are not homotopic to identity one. Each such class contains a representative that is a periodic algebraic automorphism of a two-dimensional torus. Periodic automorphisms of a two-dimensional torus are not structurally stable maps, and, in general, it is impossible to predict the dynamics of their arbitrarily small perturbations. However, in the case when a periodic diffeomorphism is algebraic, we constructed a one-parameter family of maps consisting of the initial periodic algebraic automorphism at zero parameter value and gradient-like diffeomorphisms of a twodimensional torus for all non-zero parameter values. Each diffeomorphism of the constructed one-parameter families inherits, in a certain sense, the dynamics of a periodic algebraic automorphism being perturbed.
Авторлар туралы
Vyacheslav Grines
Higher School of Economics
Email: vgrines@yandex.ru
ORCID iD: 0000-0003-4709-6858
Dr.Sci. (Phys.-Math.), Professor of the Department of Fundamental Mathematics
Ресей, 25/12 Bolshaya Pecherskaya St., Nizhny Novgorod 603150, RussiaDmitrii Mints
Higher School of Economics
Email: dmitriimints@gmail.com
ORCID iD: 0000-0003-0329-6946
Research Assistant, International Laboratory of Dynamical Systems and Applications
Ресей, 25/12 Bolshaya Pecherskaya St., Nizhny Novgorod 603155, RussiaEkaterina Chilina
Higher School of Economics
Хат алмасуға жауапты Автор.
Email: k.chilina@yandex.ru
ORCID iD: 0000-0002-1298-9237
Research Assistant, International Laboratory of Dynamical Systems and Applications
Ресей, 25/12 Bolshaya Pecherskaya St., Nizhny Novgorod 603155, RussiaӘдебиет тізімі
- A. B. Katok, B. Hasselblat., [Introduction to the modern dynamical systems theory], Factorial Publ., Moscow, 1999 (In Russ.), 768 с.
- D. V. Anosov, “[Geodesic flows on closed Riemannian manifolds of negative curvature]”, Trudy Mat. Inst. Steklov., 90 (1967), 3–210 (In Russ.).
- S. Batterson, “The dynamics of Morse-Smale diffeomorphisms on the torus”, Transactions of the American Mathematical Society, 256 (1979), 395–403.
- S. V. Sidorov, E. E. Chilina, “On non-hyperbolic algebraic automorphisms of a two-dimensional torus”, Zhurnal SVMO, 23:3 (2021), 295–307 (In Russ.). DOI:https://doi.org/10.15507/2079-6900.23.202103.295-307
- A. N. Bezdenezhykh, V. Z. Grines, “Realization of gradient-like diffeomorphisms of two-dimensional manifolds”, Sel. Math. Sov., 11:1 (1992), 19–23.
- J. Nielsen, Die struktur periodischer transformationen von flachen, 15, Levin & Munksgaard, Kobenhavn, 1937, 78 с.
Қосымша файлдар


