Comparison of two schemes of radiation transfer within the vegetation canopy based on measurements at the Mukhrino carbon polygon
- Авторлар: Pavinsky S.V.1, Stepanenko V.M.1,2, Dyukarev E.A.3,4
-
Мекемелер:
- Lomonosov Moscow State University
- Ugra State University
- Institute for Monitoring of Climate and Ecological Systems SB RAS
- Yugra State University
- Шығарылым: Том 16, № 2 (2025)
- Беттер: 58-68
- Бөлім: Theoretical works
- URL: https://journal-vniispk.ru/2218-4422/article/view/354757
- DOI: https://doi.org/10.18822/edgcc642575
- ID: 354757
Дәйексөз келтіру
Толық мәтін
Аннотация
Models of radiation transfer within vegetation cover are an important component of the Earth system models, since solar radiation is the main source of energy on Earth and determines the thermal regime of the soil. It also significantly depends on the interception of the radiation by vegetation. The aim of this work is to evaluate the accuracy of a two-stream model of radiation transfer and a multiple reflection model that approximates radiation fluxes within vegetation cover using geometric series. Validation and comparison of the models were conducted using automatic observations recorded in a forest ecosystem at the Mukhrino carbon polygon. It is shown that the latter model is sensitive both to setting the proportion between atmospheric direct and diffuse radiation coming from the atmosphere and to refining the reflection and transmission parameters for leaves by dividing the spectrum into several parts. It is demonstrated that when setting the same optical parameters, the two-stream scheme has a higher degree of consistency with observations than the multiple reflection scheme.
Толық мәтін
##article.viewOnOriginalSite##Авторлар туралы
S. Pavinsky
Lomonosov Moscow State University
Хат алмасуға жауапты Автор.
Email: stanislavpavinskij@gmail.com
Faculty of Geography
Ресей, MoscowV. Stepanenko
Lomonosov Moscow State University; Ugra State University; Lomonosov Moscow State University
Email: stanislavpavinskij@gmail.com
Research Computing Center, Faculty of Geography
Ресей, Moscow; Khanty-Mansiisk; MoscowE. Dyukarev
Institute for Monitoring of Climate and Ecological Systems SB RAS; Yugra State University
Email: stanislavpavinskij@gmail.com
Ресей, Tomsk; Khanty-Mansiisk
Әдебиет тізімі
- Bonan G.B. 1996. A land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: technical description and user’s guide. NCAR Technical Note, NCAR/TN-417+STR. National Center for Atmospheric Research.
- Coakley J.A., Chylek P. 1975. The two-stream approximation in radiative transfer: including the angle of the incident radiation. Journal of the Atmospheric Sciences, 32: 409-418.
- Dai Q., Sun S. 2006. A generalized layered radiative transfer model in the vegetation canopy. Advances in atmospheric sciences, 23: 243-257. doi: 10.1007/s00376-006-0243-7
- Dai Q., Sun S. 2007. A simplified scheme of the generalized layered radiative transfer model. Advances in Atmospheric Sciences, 24(2): 213-226. doi: 10.1007/s00376-007-0213-8
- Dickinson R.E. 1983. Land surface processes and energy balance climate-surface albedos and energy balance. Advances in atmospheric sciences, 25: 305-353
- Disney M., Lewis P., North, P. 1999. Monte Carlo ray tracing in optical canopy reflectance modelling. Remote Sensing Reviews, 18: 163-196. doi: 10.1080/02757250009532389
- Gates D.M. 1966. Spectral Distribution of Solar Radiation at the Earth's Surface. Science, 151: 523-529 doi: 10.1126/science.151.3710.523
- Govaerts Y. 1996. A Model of Light Scattering in Three-Dimensional Plant Canopies: a Monte Carlo Ray Tracing Approach. PhD Thesis. Université Catholique de Louvain, Belgium.
- Gouttevin I., Lehning M., Jonas T., Gustafsson D., Mölder M. 2015. A two-layer canopy model with thermal inertia for an improved snowpack energy balance below needleleaf forest (model SNOWPACK, version 3.2.1, revision 741). Geoscientific Model Development, 8(8): 2379-2398. doi: 10.5194/gmd-8-2379-2015
- Hovi A., Rautiainen M. 2022. Leaf and needle spectra for 25 boreal tree species. Mendeley Data, V1. doi: 10.17632/nvgjcn5nsx.1
- Levashova N.T., Mukhartova Yu.V. 2018. A three-dimensional model of solar radiation transfer in a non-uniform plant canopy. IOP Conference Series: Earth and Environmental Science, 107(1). doi: 10.1088/1755-1315/107/1/012101
- Noda H.M., Motohka, T., Murakami, K., Muraoka H., Nasahara K.N. 2014. Reflectance and transmittance spectra of leaves and shoots of 22 vascular plant species and reflectance spectra of trunks and branches of 12 tree species in Japan. Ecological Research, 29(2), 111. doi: 10.1007/s11284-013-1096-z
- Pilnikova Z.N. 1998. Scientific and applied handbook on the climate of the USSR. Vol. 17. Parts 1-6. Gidrometeoizdat, St. Petersburg (in Russian). [Пильникова З.Н. Научно-прикладной справочник по климату СССР. Вып. 17. Части 1-6. СПб.: Гидрометеоиздат, 1998].
- Ross J. 1981. The radiation regime and architecture of plant stands. Dr W. Junk Publishers. doi: 10.1007/978-94-009-8647-3
- Saito K., Ogawa S., Aihara M., Otowa K. 2001. Estimates of LAI for forest management in Okutama. Proc. 22nd ACRS 1, 600-605.
- Sellers P.J. 1985. Canopy reflectance, photosynthesis and transpiration. International Journal of Remote Sensing, 6(8): 1335-1372. doi: 10.1080/01431168508948283
- Stähli M., Jonas T., Gustafsson D. 2009. The role of snow interception in winter-time radiation processes of a coniferous sub-alpine forest. Hydrological Processes, 23(17): 2498-2512. doi: 10.1002/hyp.7180
- ASTM International. 2003. ASTM G173-03, Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface.
- Sergeev I.D., Levashova N.T. 2022. Modeling the interaction of solar radiation with vegetation elements using the Monte–Carlo method. Moscow University Physics Bulletin, 4 (in Russian). [Сергеев И.Д., Левашова Н.Т. Моделирование взаимодействия солнечной радиации с элементами растительности при помощи метода Монте-Карло // Ученые записки физического факультета Московского университета. № 4.].
- Stepanenko V.M., Medvedev A.I., Bogomolov V.Yu., Shangareeva S.K., Ryazanova A.A., Faykin G.M., Ryzhova I.M., Suiazova V.I., Debolskiy A.V., Chernenkov A.Yu. 2024. Land surface scheme TerM: the model formulation, code architecture and applications. Russian Journal of Numerical Analysis and Mathematical Modelling, vol. 39, no. 6: 363-377. doi: 10.1515/rnam-2024-0031
- Taconet O., Bernard R., Vidal-Madjar D. 1986. Evapotranspiration over an Agricultural Region Using a Surface Flux/Temperature Model Based on NOAA-AVHRR Data. Journal of climate and applied meteorology, 25: 284-307.
- Volodin E.M. 2016. Representation of heat, moisture and momentum fluxes in climate models. Fluxes at surface. Fundamental and Applied Climatology, 1: 28-42. doi: 10.21513/2410-8758-2016-1-28-42
- Volodin E.M. 2016. Mathematical Modeling of the Earth System (Iakovlev N.G., Ed.). MAKS Press.
- Volodin E.M., Gritsun A.S. 2020. Simulation of Possible Future Climate Changes in the 21st Century in the INM-CM5 Climate Model. Izvestiya - Atmospheric and Ocean Physics, 56(3): 218-228. doi: 10.1134/S0001433820030123
Қосымша файлдар






