A critical multidisciplinary view on the speculative hypothesis of deep-earth georeactor and its impact on the global climate

封面

如何引用文章

全文:

详细

Scientific literature is overwhelmed by hypotheses claiming to disprove generally accepted ideas about the causes of climate change. Until recently, a vast majority of climate revisionists just forced themselves not to consider human activity as a driving force of global warming, while the role of natural climate cycles has been overemphasized.

The concept of naturally emerged georeactor operating in a pulse mode brings us to the next level of climate revisionism. Authors of this hypothesis dare to associate cyclic climate changes with the repetitive occurrence of nuclear fission reactions in the deep Earth’s interior rather than with long-term variations in Earth's orbit and axial tilt, commonly referred to as the Milankovitch cycles [Milankovitch, 1941]. A proposed operating cycle of hypothetical deep-Earth georeactor includes: 1) exsolution of actinide (uranium (U) and thorium (Th)) particles from iron melt in the Earth's outer liquid core; 2) deposition of these particles onto the inner solid core; 3) initiation of nuclear fission as the actinide layer reaches a critical thickness; 4) termination of fission due to the dispersion of fissionable material within liquid core; 5) re-deposition of actinide particles onto the inner-outer core boundary and so on.

It was speculated that the alternation of glacial and interglacial periods in the Earth's geological history is synchronized with georeactor operating cycles. According to this hypothesis’s proponents, radiogenic heat from nuclear fission is transferred through the silicate rock mantle and warms the Earth’s crust, thereby triggering a massive release of carbon-containing greenhouse gases (GHG) from their natural reservoirs and subsequent global temperature increase. Although other georeactor concepts have been proposed in the literature before [Herndon, 1993; Rusov et al., 2007; Anisichkin et al., 2008; Ludhova et al., 2015; Meijer & van Westrenen, 2008], none of them suggested a pulsed mode of operation or considered the possible influence of radiogenic heat production on the Earth’s climate.

As demonstrated in this discussion paper, the feasibility of nuclear fission reactions in the deep Earth’s interior should be rejected for geochemical reasons, and the core georeactor hypothesis described above is the easiest to disprove. Being refractory litophile elements, U and Th should have been partitioned into the primitive mantle rather than into the core during metal-silicate segregation in the magma ocean (MO) stage of Earth's evolution [McDonough & Sun, 1995]. They are considered to form oxides at the mantle conditions, whereas their residual amounts appeared as pure metals within the core. Partitioning experiments in the laser-heated diamond anvil cell performed at high pressure-temperature conditions relevant to primordial MO have shown that no more than 2.5-3.5 ppb U could be dissolved in iron melt during liquid core formation [Chidester et al., 2017; Blanchard et al., 2017]. Such trace amounts of U tended to be further segregated into solid inner core as it crystallized.

Once exsoluted from the liquid portion of the core, U has been irreversibly incorporated into the solid one as pure grains and/or point defects in crystalline Fe. This scenario, confirmed by density functional theory calculations, rules out any chance for U particles to form a layer of critical thickness on the inner-outer core boundary [Botana et al., 2025]. Although such experimental and theoretical evidences are lacking for thorium, Th and U concentrations in the newly formed liquid core should have been of the same order due to the comparable values of metal-silicate partition coefficients [Faure et al., 2020]. Since both these elements are characterized by very low solubility in molten iron, Th was expected to exsolute from the remaining liquid core portion in the same manner as U. Thus, almost negligible content of actinides within the Earth’s core, along with their irreversible incorporation into its solid portion, leaves no room for the concept of core georeactor operating in a pulse mode, but what about the bulk of them segregated into the molten silicate phase during MO differentiation?

The current U and Th content in bulk silicate Earth (mantle plus crust, BSE) was estimated to be ~20 and ~80 ppb, respectively. Extrapolation of these values back to 4.5 Ga (the age of core-mantle differentiation) would result in ~54 ppb U and ~99 ppb Th in initial BSE (primitive mantle before crust formation). Such decrease in the concentration of these elements is due to their radioactive decay with time. Low relative abundances of actinides in initial BSE, constrained by the composition of chondritic meteorites regarded as the main building blocks of the Earth, did not allow for U and Th oxides to crystallize from silicate melt as pure phases. Instead of such crystallization, these oxides were prone to be incorporated into the lattice of mantle silicate minerals such as CaSiO3 perovskite (Ca-perovskite) [Gautron et al., 2006; Gréaux et al., 2009]. Apart from other conditions required for the initiation and sustained operation of hypothetical mantle georeactor, there should exist concentration factors of several orders of magnitude to reach criticality without the formation of distinct mineral phases by actinide compounds.

First of all, U and Th oxides are thought to reside in the lowermost part of the mantle (so-called D" layer) which comprises 5 wt% (percentage by weight) of initial BSE and is almost unaffected by convective processes [Tolstikhin et al., 2006]. Assuming that D" layer stores one-fifth of the total BSE inventory of actinides, we easily concluded that this geochemical reservoir must be enriched with U and Th by a factor of four. Then, these elements have been found to be incorporated much more readily (by a factor of 104-105) into the crystal lattice of Ca-perovskite than of the other lowermost mantle minerals (ferropericlase and post-perovskite) [Walter et al., 2004; Corgne et al., 2005]. Since Ca-perovskite phase constitutes only ~5 wt% of D" layer, a further 20-fold enrichment in actinides was to be achieved.

The resulting concentration factor of ~80 corresponds to ~4.3 ppm U and ~7.9 ppm Th upon the formation of Ca-perovskite reservoir within D" layer. These values are still several orders of magnitude less than those required for georeactor initiation. If we take into account the presence of plutonium (Pu) and its role as a source of fast neutrons, criticality conditions for nuclear fission to occur could be met at much smaller local concentrations of U and Th, but an additional concentration factor of ~20 is necessary to enable sustained operation of georeactor [Meijer & van Westrenen, 2008]. No such factors have been identified at the lowermost mantle conditions if we leave aside unproven speculations.

Thus, the geochemical fate of actinides provides no room for deep-Earth georeactor to emerge neither in the core nor within the mantle. The only geochemical reservoir where naturally occuring nuclear fission reaction could be initiated is the upper layer of the Earth’s crust composed of sedimentary rocks. The differentiation of mantle-derived melts within magma chambers followed by hydrothermal transport of U from enriched residual melts to the upper crust resulted in the formation of U ore deposits.

Spontaneous nuclear fission is permitted to occur only in high-grade ores with U content more than 10 wt%. In addition to this requirement, a number of additional conditions should be met to reach criticality in the rich zone of ore. As for the sandstone-type ore deposits, this zone must be quite thick (> 0.5 m) and chopped up by tectonic faults in order to provide the entry of water acting as a neutron moderator [Naudet, 1991]. All these conditions were satisfied in Oklo deposits (Gabon, South Africa) where the only known natural nuclear reactor on Earth operated ~2.0 Ga ago for ~100 Ma. Since then, there was no chance for such reactors to initiate and operate as the 235U/238U ratio became too low to support criticality [Gauthier-Lafaye & Weber, 2003].

Neither deep-Earth georeactors nor Oklo-like natural reactors, even if they existed, wouldn’t be able to affect the Earth’s heat balance. The power output of the latter (~100 kW) was estimated to be quite negligible compared to the total heat input from the Earth’s interior (43-49 TW). According to theoretical estimates, the operation of hypothetical core georeactor would contribute up to 30 TW to geothermal heat flow (GHF) if the radiogenic heat was transferred by mantle convection to the Earth’s surface over geologically relevant timescales.

Nevertheless, convective flow velocities correspond to plate tectonic ones and do not exceed 1-10 cm·year-1, although mantle plumes could ascend from the core-mantle boundary two or more orders of magnitude faster (100 cm·year-1) [Bercovici, 2010]. Anyway, these upwelling processes are so slow that excessive radiogenic heat (ERC) must be dispersed into the surrounding mantle rocks instead of being transferred to the Earth’s crust. Even if ERC reached the Earth’s surface without losses, ERC-induced GHF alterations wouldn’t be synchronized with georeactor operating cycles due to the different timescales of heat production and heat transfer.

Moreover, warming of the Earth’s crust by enhanced GHF wouldn’t have been resulted in the release of GHG from their natural reservoirs into the atmosphere, i.e., carbon dioxide from the ocean water column and methane from deep sea gas hydrates (DSGH). As for the latter, it has been shown that DSGH destabilization requires an extreme warming of seafloor (e.g., from 1-2 to 14-15 ºC at the depth of 1200 m!) [Ruppel & Kessler, 2017] that couldn’t be provided by geothermal activity. Finally, one could only imagine the occurrence of such unrealistic event, but even in this case methane released from DSGH would be oxidized in bottom sediments and the overlying water column before it entered the atmosphere [Reeburgh, 2007].

Thus, the hypothesis of deep-Earth georeactor and its impact on the global climate is based on a multitude of poor assumptions that contradict a number of studies from several scientific disciplines, from geochemistry to climatology.

作者简介

N. Ustinov

Institute of Atmospheric Physics named after A. M. Obukhov, RAS

编辑信件的主要联系方式.
Email: nikustinov@ifaran.ru
俄罗斯联邦, Moscow

参考

  1. Anisichkin V.F. 2025. On the causes of cyclical climate changes. Environmental Dynamics and Global Climate Change, 16(3): 113-120. doi: 10.18822/edgcc678513
  2. Anisichkin V.F., Bezborodov A.A., Suslov I.R. 2008. Georeactor in the Earth. Transport Theory and Statistical Physics, 37: 624-633 (in Russian).
  3. Arevalo R., McDonough W.F., Luong M. 2009. The K/U ratio of the silicate Earth: Insights into mantle composition, structure and thermal evolution. Earth and Planetary Science Letters, 278: 361-369.
  4. Arkani-Hamed J. 2016. Formation of a Solid Inner Core During the Accretion of the Earth. JGR Solid Earth, 122: 3248-3285.
  5. Bercovici D. Mantle convection. 2010. Encyclopedia of Solid Earth Geophysics, (H. Gupta. ed.), p. 1059-1079, Springer Cham.
  6. Bice K.L., Marotzke J. 2002. Could changing ocean circulation have destabilized methane hydrate at the Paleocene/Eocene boundary? Paleoceanography, 17(2): 8.1-8.12.
  7. Björnberg K.E., Karlsson M., Gilek M., Hansson, S.O. 2017. Climate and environmental science denial: A review of the scientific literature published in 1990–2015. Journal of Cleaner Production, 167: 229-241.
  8. Blanchard I., Siebert J., Borensztajn S., Badro J. 2017. The solubility of heat-producing elements in Earth’s core. Geochemical Perspectives Letters, 5(5): 1-5.
  9. Botana J., Urbach B.S., Moffett-Smith C.M., Gilbert Q.K., McGarvey E.W. 2025. Uranium at the conditions of the Earth’s inner core: Fe-U forms and implications. Physica B: Condensed Matter, 707: 417181.
  10. Bouhifd M.A., Jephcoat A.P. 2011. Convergence of Ni and Co metal-silicate partition coefficients in the deep magma-ocean and coupled silicon-oxygen solubility in iron melts at high pressures. Earth and Planetary Science Letters, 307: 341-348.
  11. Boyet M., Bouvier A., Frossard P., Hammouda T., Garçon M., Gannoun A. 2018. Enstatite chondrites EL3 as building blocks for the Earth: The debate over the 146Sm-142Nd systematics. Earth and Planetary Science Letters, 488: 68-78.
  12. Buffett B. 2013. Earth’s enigmatic inner core. Physics Today, 66(11): 37-41.
  13. Chidester B.A., Rahman Z., Righter K., Campbell A.J. 2017. Metal-silicate partitioning of U: Implications for the heat budget of the core and evidence for reduced U in the mantle. Geochimica et Cosmochimica Acta, 199: 1-12.
  14. Clesi V., Bouhifd M.A., Bolfan-Casanova N., Manthilake G., Fabbrizio A., Andrault D. 2016. Effect of H2O on metal–silicate partitioning of Ni, Co, V, Cr, Mn and Fe: Implications for the oxidation state of the Earth and Mars. Geochimica et Cosmochimica Acta, 192: 97-121.
  15. Corfield R.M., Cartlidge J.E. 1992. Oceanographic and climatic implications of the Palaeocene carbon isotope maximum. Terra Nova, 4(4): 443-455.
  16. Corgne A., Liebske C., Wood B.J., Rubie D.C., Frost D.J. 2005. Silicate perovskite-melt partitioning of trace elements and geochemical signature of a deep perovskitic reservoir. Geochimica et Cosmochimica Acta, 69: 485-496.
  17. Davies R.J., Clarke A.L. 2010. Methane recycling between hydrate and critically pressured stratigraphic traps, offshore Mauritania. Geology, 38(11): 963-966.
  18. Dickens G. Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene // Paleoceanography. 1995. V. 10. № 6, P. 965–971.
  19. Dickens G.R., Castillo M.M., Walker J.C. G. 1997. A blast of gas in the latest Paleocene: Simulating first-order effects of massive dissociation of oceanic methane hydrate. Geology, 25(3): 259-262.
  20. Dosseto A., Turner S. P. 2010. Magma cooling and differentiation - uranium-series isotopes. Timescales of magmatic processes. (A. Dosseto, S. P. Turner, J. A. Van Orman, eds.), p. 160-180, Chichester, West Sussex, UK; Hoboken, NJ: Wiley-Blackwell, Wiley.
  21. Dye S.T. 2012. Geoneutrinos and the radioactive power of the Earth. Reviews of Geophysics, 50(3): RG3007.
  22. Falkowski P., Scholes R.J., Boyle E., Canadell J., Canfield D., Elser J., Gruber N., Hibbard K., Högberg P., Linder S., Mackenzie F.T., Moore B., Pedersen T., Rosenthal Y., Seitzinger S., Smetacek V., Steffen W. 2000. The global carbon cycle: a test of our knowledge of earth as a system. Science, 290(5490): 291-296.
  23. Faure F., Bouhifd M.A., Boyet M., Manthilake G., Clesi V., Devidal J.-L. 2020. Uranium and thorium partitioning in the bulk silicate Earth and the oxygen content of Earth’s core. Geochimica et Cosmochimica Acta, 275: 83-98.
  24. Friedlingstein P., O’Sullivan M., Jones M.W., Andrew R.M., Gregor L., Hauck J., Le Quéré C., Luijkx I.T., Olsen A., Peters G.P., Peters W., Pongratz J., Schwingshackl C., Sitch S., Canadell, J.G., Ciais P., Jackson R.B., Alin S.R., Alkama R., Arneth A., Arora V.K., Bates N.R., Becker M., Bellouin N., Bittig H.C., Bopp L., Chevallier F., Chini L.P., Cronin M., Evans W., Falk S., Feely R.A., Gasser T., Gehlen M., Gkritzalis T., Gloege L., Grassi G., Gruber N., Gürses Ö., Harris I., Hefner M., Houghton R.A., Hurtt G.C., Iida Y., Ilyina T., Jain A.K., Jersild A., Kadono K., Kato E., Kennedy D., Klein Goldewijk K., Knauer J., Korsbakken, J.I., Landschützer P., Lefèvre N., Lindsay K., Liu J., Liu Z., Marland G., Mayot N., McGrath M.J., Metzl N., Monacci N.M., Munro D.R., Nakaoka S.-I., Niwa Y., O’Brien K., Ono T., Palmer P.I., Pan N., Pierrot D., Pocock K., Poulter B., Resplandy L., Robertson E., Rödenbeck C., Rodriguez C., Rosan T.M., Schwinger J., Séférian R., Shutler J.D., Skjelvan I., Steinhoff T., Sun Q., Sutton A.J., Sweeney C., Takao S., Tanhua T., Tans P.P., Tian X., Tian H., Tilbrook B., Tsujino H., Tubiello F., van der Werf G.R., Walker A.P., Wanninkhof R., Whitehead C., Willstrand Wranne A., Wright R., Yuan W., Yue C., Yue X., Zaehle S., Zeng, J., Zheng B. 2022. Global Carbon Budget 2022. Earth System Science Data, 14(11): 4811-4900.
  25. Gauthier-Lafaye F., Weber F. 2003. Natural nuclear fission reactors: time constraints for occurrence, and their relation to uranium and manganese deposits and to the evolution of the atmosphere. Precambrian Research, 120(1–2): 81-100.
  26. Gautron L., Greaux S., Andrault D., Bolfan-Casanova N., Guignot N., Bouhifd M.A. 2006. Uranium in the Earth’s lower mantle. Geophysical Research Letters, 33(23): 2006GL027508.
  27. Gréaux S., Gautron L., Andrault D., Bolfan-Casanova N., Guignot N., Bouhifd M.A. 2009. Experimental high pressure and high temperature study of the incorporation of uranium in Al-rich CaSiO3 perovskite. Physics of the Earth and Planetary Interiors, 174(1-4): 254-263.
  28. Gubbins D., Masters T. G., Jacobs J. A. 1979. Thermal evolution of the Earth’s core. Geophysical Journal International, 59(1): 57-99.
  29. Gutjahr M., Ridgwell A., Sexton P.F., Anagnostou E., Pearson P.N., Pälike H., Norris R.D., Thomas E.; Foster G.L. 2017. Very large release of mostly volcanic carbon during the Paleocene-Eocene Thermal Maximum. Nature, 548(7669): 573-577.
  30. Hazen R. M., Ewing R. C., Sverjensky D. A. 2009. Evolution of uranium and thorium minerals. American Mineralogist, 94(10): 1293-1311.
  31. Herndon J. M. 1993. Feasibility of a Nuclear Fission Reactor at the Center of the Earth as the Energy Source for the Geomagnetic Field. Journal of geomagnetism and geoelectricity, 45(5): 423-437.
  32. Herndon J., Edgerley D. 2005. Background for Terrestrial Antineutrino Investigations: Radionuclide Distribution, Georeactor Fission Events, and Boundary Conditions on Fission Power Production. arXiv: High Energy Physics – Phenomenology, 1-14.
  33. Hirose K., Sinmyo R., Hernlund J. 2017. Perovskite in Earth’s deep interior. Science, 358(6364): 734-738.
  34. Hunter S.J., Goldobin D.S., Haywood A.M., Ridgwell A., Rees J.G. 2013. Sensitivity of the global submarine hydrate inventory to scenarios of future climate change. Earth and Planetary Science Letters, 367: 105–115.
  35. Kender S., Bogus K., Pedersen G.K., Dybkjær K., Mather T.A., Mariani E., Ridgwell A., Riding J.B., Wagner T., Hesselbo S.P., Leng, M.J. 2021. Paleocene/Eocene carbon feedbacks triggered by volcanic activity. Nature Communications, 12(1): 5186.
  36. Kennett J.P., Stott L.D. 1991. Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene. Nature, 353(6341): 225-229.
  37. Кирдяшкин А.А., Кирдяшкин А.Г., Дистанов В.Э., Гладков И.Н. 2016. Геодинамические режимы мантийных термохимических плюмов // Геология и геофизика. Т. 57. № 6. С. 1092-1105. doi: 10.15372/GiG20160602
  38. Конищев В.Н. 2011. Реакция вечной мерзлоты на потепление климата // Криосфера Земли. № 4. С. 15-18.
  39. Kuroda P.K. 1956. On the Nuclear Physical Stability of the Uranium Minerals. The Journal of Chemical Physics, 25(4): 781-782.
  40. Lambert I.B., Heier K.S. 1968. Estimates of the crustal abundances of thorium, uranium and potassium. Chemical Geology, 3(4): 233-238.
  41. Lear C.H., Elderfield H., Wilson P.A. 2000. Cenozoic deep-Sea temperatures and global ice volumes from Mg/Ca in benthic foraminiferal calcite. Science, 287(5451): 269-272.
  42. Liebske C., Schmickler B., Terasaki H., Poe B.T., Suzuki A., Funakoshi K., Ando R., Rubie D.C. 2005. Viscosity of peridotite liquid up to 13 GPa: Implications for magma ocean viscosities [rapid communication]. Earth and Planetary Science Letters, 240: 589-604.
  43. Ludhova L., Bellini G., Benziger J., Bick D., Bonfini G., Bravo D., Caccianiga B., Calaprice F., Caminata A., Cavalcante P., Chavarria A., Chepurnov A., D’Angelo D., Davini S., Derbin A., Empl A., Etenko A., Fomenko K., Franco D., Fiorentini G., Galbiati C., Gazzana S., Ghiano C., Giammarchi M., Göger-Neff M., Goretti A., Hagner C., Hungerford E., Ianni A., Ianni A., Kobychev V., Korablev D., Korga G., Kryn D., Laubenstein M., Lehnert B., Lewke T., Litvinovich E., Lombardi F., Lombardi P., Lukyanchenko G., Machulin I., Manecki S., Maneschg W., Mantovani F., Marcocci S., Meindl Q., Meroni E., Meyer M., Miramonti L., Misiaszek M., Mosteiro P., Muratova V., Oberauer L., Obolensky M., Ortica F., Otis K., Pallavicini M., Papp L., Perasso L., Pocar A., Ranucci G., Razeto A., Re A., Ricci B., Romani A., Rossi N., Saldanha R., Salvo C., Schönert S., Simgen H., Skorokhvatov M., Smirnov O., Sotnikov A., Sukhotin S., Suvorov Y., Tartaglia R., Testera G., Vignaud D., Vogelaar R.B., Von Feilitzsch F., Wang H., Winter J., Wojcik M., Wright A., Wurm M., Zaimidoroga O., Zavatarelli S., Zuber K., Zuzel G. 2015. Geo-neutrinos and Borexino. Phys. Part. Nuclei, 46(2): 174-181.
  44. McDonough W. F., Sun S. 1995. The composition of the Earth. Chemical Geology, 120: 223-253.
  45. Meijer de R. J., Anisichkin V. F., van Westrenen W. 2013. Forming the Moon from terrestrial silicate-rich material. Chemical Geology, 345: 40-49.
  46. Meijer de R. J., van Westrenen W. 2008. The feasibility and implications of nuclear georeactors in Earth’s core–mantle boundary region. South African Journal of Science, 104: 111-118.
  47. Milankovitch M. 1941. Kanon der Erdbestrahlungen und seine Anwendung auf das Eiszeitenproblem. Royal Serbian Academy. 371 Section of Mathematical and Natural Sciences. Vol. 33. Belgrade.
  48. Milkov A.V. 2004. Global estimates of hydrate-bound gas in marine sediments: how much is really out there? Earth-Science Reviews, 66(3-4): 183-197.
  49. Митрофанов В.В., Анисичкин В.Ф., Воронин Д.В., Жилин А.А., Федоров А.В., Крюков Б.П., Туркин А.И. 1999. О возможности взрывного ядерного энерговыделения в недрах планет // Труды Международной конференции V Забабахинские научные чтения. Снежинск: Издательство РФЯЦ-ВНИИТФ. С. 67-76.
  50. Myhre G., Shindell D., Bréon F.-M., Collins W., Fuglestvedt J., Huang J., Koch D., Lamarque J.-F., Lee D., Mendoza B., Nakajima T., Robock A., Stephens G., Takemura T., Zhang H. 2013. Anthropogenic and Natural Radiative Forcing. In: Climate Change 2013 – The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, p. 659-740, Cambridge: Cambridge University Press.
  51. Naudet R. 1991. Oklo: des réacteurs nucléaires fossiles. Paris: Collection du Commissariat à l’Énergie Atomique, 695 p.
  52. Perry S.N., Pigott J. S., Panero W. R. 2017. Ab initio calculations of uranium and thorium storage in CaSiO3-perovskite in the Earth’s lower mantle. American Mineralogist, 102: 321-326.
  53. Petrov Y.V. 1977. The Oklo natural nuclear reactor. Soviet Physics Uspekhi, 20(11): 937.
  54. Piñero E., Marquardt M., Hensen C., Haeckel M., Wallmann K. 2013. Estimation of the global inventory of methane hydrates in marine sediments using transfer functions. Biogeosciences, 10(2): 959-975.
  55. Ravnik M., Jeraj R. 2005. Criticality analyses of regions containing uranium in the earth history. Kerntechnik, 70(3): 146-152.
  56. Reeburgh W.S. 2007. Oceanic Methane Biogeochemistry. Chem. Rev, 107(2): 486-513.
  57. Rubie D. C., Jacobson S. A. 2016. Mechanisms and Geochemical Models of Core Formation. Deep Earth: Physics and Chemistry of the Lower Mantle and Core. (Terasaki H., Fischer R.A. eds.), p. 181-190, American Geophysical Union.
  58. Rubie D.C., Jacobson S.A., Morbidelli A., O’Brien D.P., Young E.D., de Vries J., Nimmo F., Palme H., Frost D.J. 2015. Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water. Icarus, 248: 89-108.
  59. Ruppel C. D., Kessler J. D. 2017. The interaction of climate change and methane hydrates. Reviews of Geophysics, 55(1): 126-168.
  60. Rusov V.D., Pavlovich V.N., Vaschenko V.N., Tarasov V.A., Zelentsova T.N., Bolshakov V.N., Litvinov D.A., Kosenko S.I., Byegunova O.A. 2007. Geoantineutrino spectrum and slow nuclear burning on the boundary of the liquid and solid phases of the Earth’s core. Journal of Geophysical Research (Solid Earth), 112: B09203.
  61. Шполянская Н.А., Осадчая Г.Г., Малкова Г.В. 2002. Современное изменение климата и реакция криолитозоны (на примере Западной Сибири и Европейского Севера России) // Географическая среда и живые системы. № 1. С. 6-30. doi: 10.18384/2712-7621-2022-1-6-30
  62. Tolstikhin I.N., Kramers J.D., Hofmann A.W. 2006. A chemical Earth model with whole mantle convection: The importance of a core–mantle boundary layer (D″) and its early formation. Chemical Geology, 226(3-4): 79-99.
  63. Tonks W.B., Melosh H.J. Magma ocean formation due to giant impacts // Journal of Geophysical Research. 1993. V. 98. P. 5319-5333.
  64. Wallmann K., Pinero E., Burwicz E., Haeckel M., Hensen C., Dale A., Ruepke L. 2012. The Global Inventory of Methane Hydrate in Marine Sediments: A Theoretical Approach. Energies, 5(7): 2449-2498.
  65. Walter M.J., Nakamura E., Trønnes R.G., Frost D.J. 2004. Experimental constraints on crystallization differentiation in a deep magma ocean. Geochimica et Cosmochimica Acta, 68: 4267-4284.
  66. Wasson J.T., Kallemeyn G.W. 1988. Compositions of Chondrites. Philosophical Transactions of the Royal Society of London Series A, 325: 535-544.
  67. Wood B.J., Walter M.J., Wade J. 2006. Accretion of the Earth and segregation of its core. Nature, 441(7095): 825-833.
  68. Yoshino T., Walter M.J., Katsura T. 2003. Core formation in planetesimals triggered by permeable flow. Nature, 422(6928): 154-157.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Scheme of actinide distribution between deep-Earth geochemical reservoirs during core-mantle differentiation:

下载 (110KB)
3. Fig. 2. Temperature-depth conditions for methane hydrate stability in permafrost areas (on the left) and in the marine sediments (on the right). Zones of potential methane hydrate occurrence are depicted by dotted lines; dash-dotted line refers to the lower boundary of the permafrost layer. The scheme is based on [Ruppel & Kessler, 2017], as well as the contribution of different geological reservoirs to a total methane hydrate inventory. Subglacial methane hydrates buried below Antarctic ice sheet were omitted from this scheme for reasons of clarity.

下载 (124KB)

版权所有 © Ustinov N.B., 2025

Creative Commons License
此作品已接受知识共享署名-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».