Post-Gam-COVID-Vac combined vector vaccine cellular and humoral immune response
- Authors: Inviyaeva E.V.1, Vtorushina V.V.1, Drapkina Y.S.1, Krechetova L.V.1, Dolgushina N.V.1, Khaidukov S.V.2
-
Affiliations:
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry
- Issue: Vol 12, No 6 (2022)
- Pages: 1051-1060
- Section: ORIGINAL ARTICLES
- URL: https://journal-vniispk.ru/2220-7619/article/view/119135
- DOI: https://doi.org/10.15789/2220-7619-PCV-1975
- ID: 119135
Cite item
Full Text
Abstract
Currently, as the SARS-CoV-2 pandemic evolves, there has been increasingly more attention paid to building natural and vaccine-induced immunity against SARS-CoV-2 and related disease known as COVID-19. Widespread preventive vaccination plays an important role in effectively protecting people from viral infections and can reduce national economic costs. Purpose — to study peripheral blood cell subset composition and magnitude of humoral response in vaccinated Gam-COVID-Vac subjects. The prospective study included 352 patients, of which 194 (119 women and 75 men) underwent an immunogram study and assessed level of anti-SARS-CoV-2 antibodies. In patients, the study of the lymphocyte subset composition and estimation of anti-SARS-CoV-2 antibodies was carried out at two time points — prior to vaccination and 90 days after inoculated component 1 of the Gam-COVID-Vac vaccine. In general, vaccination was well tolerated by patients, with no serious adverse events after immunization. The reaction to the vaccine (fever, malaise, headache, local reactions) was short-term (1–2 days) and more often noted after inoculated vaccine component 2. Comparatively analyzed immunogram parameters in females before and after vaccination revealed increased relative level of T-lymphocytes (CD3+), T-helper cell subset (CD3+CD4+), increased absolute and relative level of activated CD3+CD25+ T-lymphocytes, but decreased absolute and relative level of natural killer (CD3–CD56+CD16+) and natural killer T-cell (CD3+CD56+CD16+) cell subsets as well as decreased CD147 receptor expression on T-lymphocytes. Similar patterns were also found while examining the immunogram in males exepting increased level of lymphocytes and lowered CD147 expression on both T- and B-lymphocytes. No changes in the parameters of the immune T-cell arm was found. The high efficacy of the vaccine was confirmed by development of SARS-CoV-2-specific class G antiviral antibodies in 97.5% and 92.3% of vaccinated females and males, respectively. The data obtained evidence that: 1) vaccination induces a specific humoral immune response determined three months post-vaccination, and 2) it caused no serious disturbances in the immune system functioning, which could be reflected in the peripheral blood lymphocyte subset composition. Thus, the data presented allow to conclude that Gam-COVID-Vac is effective vaccine against SARS-CoV-2 infection.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
Evgeniya V. Inviyaeva
National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation
Email: e_inviyaeva@oparina4.ru
ORCID iD: 0000-0001-9878-3637
PhD (Biology), Leading Researcher, Laboratory of Clinical Immunology
Russian Federation, 117997, Moscow, Academician Oparina str., 4Valentina V. Vtorushina
National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation
Email: v_vtorushina@oparina4.ru
ORCID iD: 0000-0002-8406-3206
PhD (Medicine), Immunologist-Allergist
Russian Federation, 117997, Moscow, Academician Oparina str., 4Yulia S. Drapkina
National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation
Email: yulia.drapkina@gmail.ru
ORCID iD: 0000-0002-0545-1607
PhD (Medicine), Obstetrition-Ginecologist, B.V. Leonov Department of Assisted Technologies for the Treatment of Infertility
Russian Federation, 117997, Moscow, Academician Oparina str., 4Lyubov V. Krechetova
National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation
Email: l_krechetova@oparina4.ru
ORCID iD: 0000-0001-5023-3476
PhD, MD (Medicine), Head of the Laboratory of Clinical Immunology
Russian Federation, 117997, Moscow, Academician Oparina str., 4Nataliya V. Dolgushina
National Medical Research Center for Obstetrics, Gynecology and Perinatology named after academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation
Email: n_dolgushina@oparina4.ru
PhD, MD (Medicine), Professor, Deputy Director — Head of R&D Department
Russian Federation, 117997, Moscow, Academician Oparina str., 4Sergey V. Khaidukov
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry
Author for correspondence.
Email: Khsergey54@mail.ru
ORCID iD: 0000-0003-1600-5335
PhD, MD (Biology), Senior Researcher, Carbohydrate Laboratory
Russian Federation, 117997, Moscow, Academician Oparina str., 4References
- Гаврилов Ю.В., Корнеева Е.А. Взаимодействие нервной и иммунной систем при стрессе // Медицинский академический журнал. 2009. Т. 9, № 1. С. 11–27. [Gavrilov Yu.V., Korneeva E.A. Interaction of the nervous and immune systems under stress. Meditsinskii akademicheskii zhurnal = Medical Academic Journal, 2009, vol. 9, no. 1, pp. 11–27. (In Russ.)] doi: 10.17816/MAJ9111-27
- Ярилин А.А. Иммунология. М.: ГЭОТАР-Медиа, 2010. 752 с. [Yarilin A.A. Immunology. Moscow, GEOTAR-Media, 2010. 752 p. (In Russ.)]
- Bajgain K.T., Badal S., Bajgain B.B., Santana M.J. Prevalence of comorbidities among individuals with COVID-19: a rapid review of current literature. Am. J. Infect. Control. 2021, vol. 49, no. 2, pp. 238–246. doi: 10.1016/j.ajic.2020.06.213
- Cui J., Li F., Shi Z.L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol., 2019, vol. 17, no. 3, pp. 181–192. doi: 10.1038/s41579-018-0118-9
- Davies N.G., Klepac P., Liu Y., Prem K., Jit M.; CMMID COVID-19 working group, Eggo R.M. Age-dependent effects in the transmission and control of COVID-19 epidemics. Nat. Med., 2020, vol. 26, no. 8, pp. 1205–1211. doi: 10.1038/s41591-020-0962-9
- Dorin Dragos D., Tanasescu M. The effect of stress on the defense systems. J. Med. Life, 2010, vol. 3, no. 1, pp. 10–18.
- Fani M., Teimoori A., Ghafari S. Comparison of the COVID-2019 (SARS-CoV-2) pathogenesis with SARS-CoV and MERS-CoV infections. Futur. Virol., 2020. doi: 10.2217/fvl-2020-0050
- Florindo H.F., Kleiner R., Vaskovich-Koubi D., Acurcio R.C., Carreira B., Yeini E., Tiram G., Liubomirski Y., Satchi-Fainaro R. Immune-mediated approaches against COVID-19. Nat. Nanotechnol., 2020, vol. 15, no. 8, pp. 630–645. doi: 10.1038/s41565-020-0732-3
- Guillot S., Delaval P., Brinchault G., Caulet-Maugendre S., Depince A., Lena H., Delatour B., Lagente V., Martin-Chouly C. Increased extracellular matrix metalloproteinase inducer (EMMPRIN) expression in pulmonary fibrosis. Exp. Lung Res., 2006, vol. 32, no. 3–4, pp. 81–97. doi: 10.1080/01902140600710512
- Hori S., Nomura T., Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science, 2003, vol. 299, no. 5609, pp. 1057–1061. doi: 10.1126/science.1079490
- Jiang F., Deng L., Zhang L., Cai Y., Cheung C.W., Xia Z. Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). J. Gen. Intern. Med., 2020, vol. 35, no. 5, pp. 1545–1549. doi: 10.1007/s11606-020-05762-w
- Jones I., Roy P. Sputnik V COVID-19 vaccine candidate appears safe and effective. Lancet, 2021, vol. 397, no. 10275, pp. 642–643. doi: 10.1016/S0140-6736(21)00191-4
- Lauer S.A., Grantz K.H., Bi Q., Jones F.K., Zheng Q., Meredith H.R., Azman A.S., Reich N.G., Lessler J. The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann. Intern. Med., 2020, vol. 172, no. 9, pp. 577–582. doi: 10.7326/M20-0504
- Logunov D.Y., Dolzhikova I.V., Shcheblyakov D.V., Tukhvatulin A.I., Zubkova O.V., Dzharullaeva A.S., Kovyrshina A.V., Lubenets N.L., Grousova D.M., Erokhova A.S., Botikov A.G., Izhaeva F.M., Popova O., Ozharovskaya T.A., Esmagambetov I.B., Favorskaya I.A., Zrelkin D.I., Voronina D.V., Shcherbinin D.N., Semikhin A.S., Simakova Y.V., Tokarskaya E.A., Egorova D.A., Shmarov M.M., Nikitenko N.A., Gushchin V.A., Smolyarchuk E.A., Zyryanov S.K., Borisevich S.V., Naroditsky B.S., Gintsburg A.L.; Gam-COVID-Vac Vaccine Trial Group. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet, 2021, vol. 397, no. 10275, pp. 671–681. doi: 10.1016/S0140-6736(21)00234-8
- Nogrady B. Mounting evidence suggests Sputnik COVID vaccine is safe and effective. Nature, 2021, vol. 595, no. 7867, pp. 339–40. doi: 10.1038/d41586-021-01813-2
- Petersen E., Koopmans M., Go U., Hamer D.H., Petrosillo N., Castelli F., Storgaard M., Al Khalili S., Simonsen L. Comparing SARS-CoV-2 with SARS-CoV and influenza pandemics. Lancet Infect. Dis., 2020, vol. 20, no. 9, pp. e238–e244. doi: 10.1016/S1473-3099(20)30484-9
- Tay M.Z., Poh C.M., Renia L., MacAry P.A., Ng L.F.P. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol., 2020, vol. 20, no. 6, pp. 363–374. doi: 10.1038/s41577-020-0311-8
- Tyrrell D.A., Bynoe M.L. Cultivation of a novel type of common-cold virus in organ cultures. Br. Med. J., 1965, vol. 1, no. 5448, pp. 1467–1470. doi: 10.1136/bmj.1.5448.1467
- Wang K., Chen W., Zhang Z., Deng Y., Lian J.Q., Du P., Wei D., Zhang Y., Sun X.X., Gong L., Yang X., He L., Zhang L., Yang Z., Geng J.J., Chen R., Zhang H., Wang B., Zhu Y.M., Nan G., Jiang J.L., Li L., Wu J., Lin P., Huang W., Xie L., Zheng Z.H., Zhang K., Miao J.L., Cui H.Y., Huang M., Zhang J., Fu L., Yang X.M., Zhao Z., Sun S., Gu H., Wang Z., Wang C.F., Lu Y., Liu Y.Y., Wang Q.Y., Bian H., Zhu P., Chen Z.N. SARS-CoV-2 invades host cells via a novel route: CD147-spike protein. bioRxiv, 2020. doi: 10.1101/2020.03.14.988345
- Whiteside T.L., Herberman R.B. Role of human natural killer cells in health and disease. Clin. Diagnostic. Lab. Immunol., 1994, vol. 1, no. 2, pp. 125–133. doi: 10.1128/cdli.1.2.125-133.1994
- Zhou P., Yang X.L., Wang X.G., Hu B., Zhang L., Zhang W., Si H.R., Zhu Y., Li B., Huang C.L., Chen H.D., Chen J., Luo Y., Guo H., Jiang R.D., Liu M.Q., Chen Y., Shen X.R., Wang X., Zheng X.S., Zhao K., Chen Q.J., Deng F., Liu L.L., Yan B., Zhan F.X., Wang Y.Y., Xiao G.F., Shi Z.L. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020, vol. 579, no. 7798, pp. 270–273. doi: 10.1038/s41586-020-2012-7
- Zhou Y., Jiang S., Du L. Prospects for a MERS-CoV spike vaccine HHS Public Access. Expert Rev. Vaccines., 2018, vol. 17, no. 8, pp. 677–686. doi: 10.1080/14760584.2018.1506702
