Assessing SARS-CoV-2-related mortality rate in Russian regions, based on the econometric model

Cover Page

Cite item

Full Text

Abstract

The objects of the study were the daily data on the population morbidity and mortality due to coronavirus disease 2019 (COVID-19) in Russian regions, as well as regional medical, demographic and environmental data recorded in recent years. COVID-19 is a contagious disease caused by the novel coronavirus (SARS-CoV-2). The mathematical methods consist of correlation and regression analysis, methods of testing statistical hypotheses. First, a multiple Variable Structure Regression should be specified. The intercept in the model differs from region to region, depending on the combination of values for dummy variables. The role of the dependent variable Y t was chosen as the cumulative mortality published by the operational headquarters for the regions that has been linked to day t, so that COVID-19 was considered the main cause of death. The complex of explanatory variables included two factorial variables that changed daily, and had a lag relative to t value. Also, this complex included a number of variables that did not change with the growth of t: the explanatory variable with the region’s availability with doctors of certain specialties; and four dummy variables. One of them coded the region’s belonging to the two southern Russian Federal Districts. Three other variables characterized the increased air pollution in settlements recorded in recent years, as well as the level of radiation pollution of the region’s territory and the population health estimated for 10 classes of diseases (for the circulatory system, endocrine system, etc.). The values of such dummy variables were obtained from open data from the Federal State Statistics Service (Rosstat) etc. The model parameters were estimated by the least squares method using the training table, which included 40 Russia’s regions, the t parameter for variable Y t was assessed starting from November, 1, 2021. As a result, a statistical model was built with an approximation error equal to 3%. For ¾ regions of the regions examined this error was 1.94 (±1.5)% for the value Y t that has been fixed on the 1st Nov. The plots show daily prediction for mortality rate due to COVID-19 in the first half of November for seven Russian regions compared with actual data. The model can be useful in development of medical and demographic policy in geographic regions, as well as generating adjusted compartment models that based on systems of differential equations (SEIRF, SIRD, etc.).

About the authors

Vladimir S. Stepanov

The Central Economics and Mathematics Institute of the Russian Academy of Sciences

Author for correspondence.
Email: _stepanov@cemi.rssi.ru
ORCID iD: 0000-0002-4478-376X
http://istina.msu.ru/profile/VSStepanov

PhD (Physics and Mathematics), Senior Researcher

Russian Federation, 47, Nakhimovsky pr., Moscow, 117418

References

  1. Александров Ю.А. Основы радиационной экологии. Йошкар-Ола: Марийский госуниверситет, 2007. 268 с. [Aleksandrov Yu.A. Fundamentals of radiation ecology. Yoshkar-Ola: Mariyskii gosuniversitet, 2007. 268 p. (In Russ.)]
  2. Гаврилов Д.В., Абрамов Р.В., Кирилкина А.В., Ившин А.А., Новицкий Р.Э. Модель прогнозирования пандемии COVID-19 на основе машинного обучения в отдельных регионах Российской Федерации // Фармакоэкономика. Современная фармакоэкономика и фармакоэпидемиология. 2021. Т. 14, № 3. С. 342–356. [Gavrilov D.V., Abramov R.V., Kirilkina А.V., Ivshin А.А., Novitskiy R.E. COVID-19 pandemic prediction model based on machine learning in selected regions of the Russian Federation. Farmakoekonomika. Sovremennaya farmakoekonomika i farmakoepidemiologiya = Farmakoekonomika. Modern Pharmacoeconomics and Pharmacoepidemiology, 2021, vol. 14, no. 3, pp. 342–356. (In Russ.)] doi: 10.17749/2070-4909/farmakoekonomika.2021.108
  3. Гольдштейн Э.М. Факторы, влияющие на смертность от новой коронавирусной инфекции в разных субъектах Российской Федерации // Журнал микробиологии, эпидемиологии и иммунобиологии. 2020. Т. 97, № 6. С. 604–607. [Goldstein E.M. Factors affecting mortality for the novel coronavirus infection in different regions of the Russian Federation. Zhurnal mikrobiologii, epidemiologii i immunobiologii = Journal of Microbiology, Epidemiology and Immunobiology, 2020, vol. 97, no. 6, pp. 604–607. (In Russ.)] doi: 10.36233/0372-9311-2020-97-6-11
  4. Дружинин П.В., Молчанова Е.В. Смертность населения российских регионов в условиях пандемии COVID-19 // Регионология. 2021. Т. 29, № 3. С. 666–685. [Druzhinin P.V., Molchanova E.V. Mortality rates in Russian regions in the context of the COVID-19 pandemic. Regionologiya = Regionology. Russian Journal of Regional Studies, 2021, vol. 29, no. 3, pp. 666–685. (In Russ.)] doi: 10.15507/2413-1407.116.029.202103.666-685
  5. Единая межведомственная информационно-статистическая система (ЕМИСС). Численность врачей всех специальностей (физических лиц) в организациях, оказывающих медицинские услуги населению, на конец отчетного года. [Unified Interdepartmental Information Statistical System (EMISS). The number of doctors of all specialties (individuals) in organizations providing medical services to the population, at the end of the reporting year. (In Russ.)] URL: https://www.fedstat.ru/indicator/31547
  6. Зайцева Н.В., Май И.В., Рейс Ж., Спенсер П.С., Кирьянов Д.А., Камалтдинов М.Р. К оценке дополнительной заболеваемости населения COVID-19 в условиях загрязнения атмосферного воздуха: методические подходы и некоторые практические результаты // Анализ риска здоровью. 2021. № 3. С. 14–28. [Zaitseva N.V., May I.V., Reis J., Spenser P.S., Kiryanov D.A., Kamaltdinov M.R. On estimating the additional incidence of COVID-19 among populations exposed to polluted ambient air: methodical approaches and some practical results. Analiz riska zdorov’yu = Health Risk Analysis, 2021, no. 3, pp. 14–28. (In Russ.)] doi: 10.21668/health.risk/2021.3.02
  7. Здравоохранение в России. Приложение к сборнику (информация в разрезе субъектов Российской Федерации). 2021. [Healthcare in Russia — 2021. Appendix to the collection (information in the context of the subjects of the Russian Federation). 2021. (In Russ.)] URL: https://rosstat.gov.ru/folder/210/document/13218
  8. Зинченко Д.И., Куркина Е.С. Компьютерное моделирование распространения эпидемии COVID-19 на примере Германии // Успехи в химии и химической технологии. 2021. Т. 35, № 10 (245). С. 72–75. [Zinchenko D.I., Kurkina E.S. Computational modelling of the spread of the COVID-19 epidemic on the example of Germany. Uspekhi v khimii i khimicheskoy tekhnologii = Advances in Chemistry and Chemical Technology, 2021, vol. 35, no. 10 (245), pp. 72–75. (In Russ.)]
  9. Макаров В.Л., Бахтизин А.Р., Сушко Е.Д., Агеева А.Ф. Моделирование эпидемии COVID-19 — преимущества агент-ориентированного подхода // Экономические и социальные перемены: факты, тенденции, прогноз. 2020. Т. 13, № 4. С. 58–73. [Makarov V.L., Bakhtizin A.R., Sushko E.D., Ageeva A.F. COVID-19 epidemic modeling — advantages of an agent-based approach. Ekonomicheskiye i sotsial’nyye peremeny: fakty, tendentsii, prognoz = Economic and Social Changes: Facts, Trends, Forecast, 2020, vol. 13, no. 4, pp. 58–73. (In Russ.)] doi: 10.15838/esc.2020.4.70.3
  10. Охрана окружающей среды в России 2020. Приложение (информация в разрезе субъектов Российской Федерации). М.: Росстат, 2020. [Environmental Protection in Russia 2020. Appendix (information in the context of the constituent entities of the Russian Federation). Moscow: Rosstat, 2020. (In Russ.)] URL: https://gks.ru/bgd/regl/b20_54/Main.htm
  11. Регионы России. Cоциально-экономические показатели: стат. сб. М.: Росстат, 2021. 1114 с. [Regions of Russia. Socio-economic indicators: statistics digest. Moscow: Rosstat, 2021. 1114 p. (In Russ.)] URL: https://rosstat.gov.ru/storage/mediabank/Region_Pokaz_2021.pdf
  12. Степанов В.С. Зависимость уровня смертности в регионах от распространенности активных носителей SARS-CoV-2 и ресурсов организаций здравоохранения // Анализ риска здоровью. 2020. № 4. С. 12–23. [Stepanov V.S. Dependence between mortality in regions and prevalence of active SARS-CoV-2 carriers and resources available to public healthcare organizations. Analiz riska zdorov’yu = Human Risk Analysis, 2020, no. 4, pp. 12–23. (In Russ.)] doi: 10.21668/health.risk/2020.4.02
  13. Степанов В.С. Связь онкологической заболеваемости с возрастом населения, проживающего при неблагоприятных факторах окружающей среды // Врач и информационные технологии. 2021. № 3. С. 38–49. [Stepanov V.S. The relationship of canser prevalence with age of the population living under adverse environmental factors. Vrach i informatsionnyye tekhnologii = Medical Doctor and Information Technology, 2021, no. 3, pp. 38–49. (In Russ.)] doi: 10.25881/18110193_2021_3_38
  14. Стопкоронавирус.рф. Официальная информация о коронавирусе в России. [Official statistical data on the novel coronavirus in Russia’s regions (In Russ.)] URL: https://стопкоронавирус.рф/information
  15. Янчевская Е.Ю., Меснянкина О.А. Математическое моделирование и прогнозирование в эпидемиологии инфекционных заболеваний // Вестник Российского университета дружбы народов. Серия: Медицина. 2019. Т. 23, № 3. С. 328–334. [Yanchevskaya E.Ya., Mesnyankina O.A. Mathematical modelling and prediction in infectious disease epidemiology. Vestnik Rossiiskogo Universiteta Druzhby Narodov. Seriya: Meditsina = RUDN Journal of Medicine, 2019, vol. 23, no. 3, pp. 328–334. (In Russ.)] doi: 10.22363/2313-0245-2019-23-3-328-334
  16. Friedman J., Liu P., Troeger C.E., Carter A., Reiner R.C. Jr., Barber R.M., Collins J., Lim S.S., Pigott D.M., Vos Th., Hay S.I., Murray C.J.L., Gakidou Em. Predictive performance of international COVID-19 mortality forecasting models. Nature Communications, 2021, vol. 12: 2609. 38 p. doi: 10.1038/s41467-021-22457-w
  17. Kurkina E.S., Koltsova E.M. Mathematical modeling of the propagation of COVID-19 pandemic waves in the world. Computational Mathematics and Modeling, 2021, vol. 32, no. 2, pp. 46–79. doi: 10.1007/s10598-021-09523-0
  18. Lifshits M.L., Neklyudova N.P. COVID-19 mortality rate in Russian regions: forecasts and reality. R-economy, 2020, vol. 6, no. 3, pp. 171–182. doi: 10.15826/recon.2020.6.3.015
  19. Wang Y., Xu Ch., Yao S., Zhao Y., Li Y., Zhao X. Estimating the prevalence and mortality of coronavirus disease 2019 (COVID-19) in the USA, the UK, Russia, and India. Infection and Drug Resistance, 2020, vol. 13, pp. 3335–3350. doi: 10.2147/IDR.S265292

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Predicting the mortality Y on the 1st… 17th Nov on 105 population

Download (151KB)

Copyright (c) 2022 Stepanov V.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».