Monitoring of coronavirus infection in the kyrgyz population

Cover Page

Cite item

Full Text

Abstract

Purpose of the study: to study the dynamics of developing herd immunity against SARS-CoV-2 in the population of the Republic of Kyrgyzstan during COVID-19. Materials and methods. The work was carried out using the methodology for assessing population immunity developed by Rospotrebnadzor (Russia) as well as the Ministry of Health (Kypgyzstan) and the St. Petersburg Pasteur Institute. The selection of participants was carried out by questionnaire using a cloud (Internet server) service. To monitor population immunity, a cohort of 2421 subjects was formed, who participated in all stages of seromonitoring. Volunteers were randomized according to age groups (1–17, 18–29, 30–39, 40–49, 50–59, 60–69, 70+ years), regional and professional factors. Antibodies (Abs) against SARS-CoV-2 nucleocapsid (Nc) and the receptor binding domain (RBD) of S-glycoprotein were determined by qualitative and quantitative methods. The study was carried out in 3 stages according to a single scheme: 1st stage — 06/28–07/03/2021, 2nd — 21–25/02/2022 and 3rd — 31/10–04/11/2022. Since 2021, Kyrgyzstan has been vaccinating the population against SARS-CoV-2 mainly using inactivated whole-virion vaccines. Results. Population immunity against SARS-CoV-2 was predominantly accounted for by both Ab types (Nc+RBD+). By the 3rd stage, the percentage of such persons reached 99.2%, NcRBD volunteers — up to 0.8%. At the 1st stage, middle-aged people dominated, but age differences were leveled out by the 2nd stage. The greatest impact on seroprevalence was found among medical workers, the smallest — among businessmen and industrial workers. Populational vaccination significantly impacted on the state of herd immunity that reached 25% by the 3rd stage. The refusals of the population in Kyrgyz Republic from vaccination noted at the 2nd and especially 3rd stages did not significantly affect level of herd immunity, which could probably be associated with asymptomatic cases of COVID-19, against which primary vaccination had a booster effect. Conclusion. The dynamics of population humoral immunity against SARS-CoV-2 included a number of changes in the level of circulating antibodies (Nc, RBD), caused by both primary infection and vaccination. The herd immunity formed in population of Kyrgyzstan allowed to reduce the incidence of COVID-19 to almost sporadic level.

About the authors

A. Yu. Popova

Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Email: depart@gsen.ru

DSc (Medicine), Professor, Head of the Federal Service for Surveillance of Consumer Rights Protection and Human Wellbeing

Russian Federation, Moscow

Vyacheslav S. Smirnov

St. Petersburg Pasteur Institute

Email: vssmi@mail.ru

DSc (Medicine), Professor, Leading Researcher, Laboratory of Molecular Immunology

Russian Federation, Saint-Petersburg

O. T. Kasymov

National Institute of Public Health

Email: vssmi@mail.ru

DSc (Medicine), Рrofessor, Director

Kyrgyzstan, Bishkek

S. S. Egorova

St. Petersburg Pasteur Institute

Email: vssmi@mail.ru

DSc (Medicine), Deputy Director for Innovation

Russian Federation, St. Petersburg

Z. S. Nurmatov

National Institute of Public Health, Kyrgyz Ministry of Health

Email: vssmi@mail.ru

DSc (Medicine), Head 

Kyrgyzstan, Bishkek

I. V. Drozd

St. Petersburg Pasteur Institute

Email: vssmi@mail.ru

PhD (Biology), Head of the Central Clinical Diagnostic Laboratory

Russian Federation, Bishkek

A. M. Milichkina

St. Petersburg Pasteur Institute

Email: vssmi@mail.ru

PhD (Medicine), Head Physician of the Medical Center 

Russian Federation, Petersburg

V Yu. Smolensky

Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing

Email: vssmi@mail.ru

Deputy Head

Russian Federation, Moscow

Z. N. Nuridinova

National Institute of Public Health

Email: vssmi@mail.ru

Researcher

Kyrgyzstan, Bishkek

V. A. Ivanov

St. Petersburg Pasteur Institute

Email: vssmi@mail.ru

IT analyst

Russian Federation, St. Petersburg

G. Z. Sattarova

National Institute of Public Health, Kyrgyz Ministry of Health

Author for correspondence.
Email: vssmi@mail.ru

Researcher

Kyrgyzstan, Bishkek

E. S. Ramsay

St. Petersburg Pasteur Institute

Email: vssmi@mail.ru

Science Analyst

Russian Federation, St. Petersburg

B. I. Dzhangaziev

Kyrgyz Ministry of Health

Email: vssmi@mail.ru

Deputy Minister of Health for Digital Development

Kyrgyzstan, Bishkek

E. V. Zueva

St. Petersburg Pasteur Institute

Email: vssmi@mail.ru

PhD (Biology), Senior Researcher, Laboratory of Molecular Immunology

Russian Federation, St. Petersburg

U. U. Arabiy

National Center for Immunoprophylaxis

Email: vssmi@mail.ru

Monitoring and Evaluation Specialist

Kyrgyzstan, Bishkek

V. G. Drobyshevskaya

St. Petersburg Pasteur Institute

Email: vssmi@mail.ru

Doctor of Clinical Laboratory Diagnostics

St. Petersburg

O. B. Zhimbaeva

St. Petersburg Pasteur Institute

Email: damaoyuna@rambler.ru

Physician, Central Clinical Diagnostic Laboratory of the Medical Center

Russian Federation, St. Petersburg

A. P. Razumovskaya

St. Petersburg Pasteur Institute

Email: vssmi@mail.ru

Doctor of Clinical Laboratory Diagnostics, Central Clinical Diagnostic Laboratory of the Medical Center

Russian Federation, St. Petersburg

A. A. Totolian

St. Petersburg Pasteur Institute

Email: vssmi@mail.ru

RAS Full Member, DSc (Medicine), Professor, Director

Russian Federation, St. Petersburg

References

  1. Aboura S. The influence of climate factors and government interventions on the Covid-19 pandemic: evidence from 134 countries. Environ. Res., 2022, vol. 208: 112484. doi: 10.1016/j.envres.2021.112484
  2. About Kyrgyz Republic. URL: https://invest.gov.kg/ru/general-information/ (17.04.2023)
  3. ACTIV-3/TICO Study Group; Rogers A.J., Wentworth D., Phillips A., Shaw-Saliba K., Dewar R.L., Aggarwal N.R., Babiker A.G., Chang W., Dharan N.J., Davey V.J., Higgs E.S., Gerry N., Ginde A.A., Hayanga J.W.A., Highbarger H., Highbarger J.L., Jain M.K., Kan V., Kim K., Lallemand P., Leshnower B.G., Lutaakome J.K., Matthews G., Mourad A., Mylonakis E., Natarajan V., Padilla M.L., Pandit L.M., Paredes R., Pett S., Ramachandruni S., Rehman M.T., Sherman B.T., Files D.C., Brown S.M., Matthay M.A., Thompson B.T., Neaton J.D., Lane H.C., Lundgren J.D. The association of baseline plasma SARS-CoV-2 nucleocapsid antigen level and outcomes in patients hospitalized with COVID-19. Ann. Intern. Med., 2022, vol. 175, no. 10, pp. 1401–1410. doi: 10.7326/M22-0924
  4. Agresti A., Coull B.A. Approximate is better than “exact” for interval estimation of binomial proportions. Am. Stat., 1998, vol. 52, pp. 119–126.
  5. Ali H., Alahmad B., Al-Shammari A.A., Alterki A., Hammad M., Cherian P., Alkhairi I., Sindhu S., Thanaraj T.A., Mohammad A., Alghanim G., Deverajan S., Ahmad R., El-Shazly S, Dashti A.A., Shehab M., Al-Sabah S., Alkandari A., Abubaker J., Abu-Farha M., Al-Mulla F. Previous COVID-19 infection and antibody levels after vaccination. Front. Public Health, 2021, vol. 9: 778243. doi: 10.3389/fpubh.2021.778243
  6. Bhattacharya M., Sharma A.R., Dhama K., Agoramoorthy G., Chakraborty C. Hybrid immunity against COVID-19 in different countries with a special emphasis on the Indian scenario during the Omicron period. Int. Immunopharmacol., 2022, vol. 108: 108766. doi: 10.1016/j.intimp.2022.108766
  7. Carrillo J., Izquierdo-Useros N., Ávila-Nieto C., Pradenas E., Clotet B., Blanco J. Humoral immune responses and neutralizing antibodies against SARS-CoV-2; implications in pathogenesis and protective immunity. Biochem. Biophys. Res. Commun., 2021, vol. 538, pp. 187–191. doi: 10.1016/j.bbrc.2020.10.108
  8. Chuveleva N.N. Kyrgyzstan. Economic and geographical position. Natural conditions and resources. Educational portal “Reference book”. URL: https://spravochnick.ru/geografiya/kirgiziya_ekonomiko-geograficheskoe_polozhenie_prirodnye_usloviya_ i_resursy (17.04.2023)
  9. Coronavirus COVID-19. URL: https://news.mail.ru/story/incident/coronavirus/stat/world (17.04.2023)
  10. Coronavirus in Kyrgyzstan. URL: https://coronavirus-control.ru/coronavirus-kyrgyzstan (17.04.2023)
  11. Crotty S. Hybrid immunity: COVID-19 vaccine responses provide insights into how the immune system perceives threats. Science, 2021, vol. 372, no. 6549, pp. 1392–1393. doi: 10.1126/science.abj2258
  12. Dzushupov K., Don Lucero-Prisno E., Vishnyakov D., Lin X., Ahmadi A. COVID-19 in Kyrgyzstan: navigating a way out. Review J. Glob. Health., 2021, vol. 11: 03020. doi: 10.7189/jogh.11.03020
  13. Fernandes E.R., Taminato M., Apostolico J.S., Gabrielonni M.C., Lunardelli V.A., Maricato J.T., Andersen M.L., Tufik S., Rosa D.S. Robust specific RBD responses and neutralizing antibodies after ChAdOx1 nCoV-19 and CoronaVac vaccination in SARS-CoV-2-seropositive individuals. J. Allergy Clin. Immunol. Glob., 2023, vol. 2, no. 2: 100083. doi: 10.1016/j.jacig.2023.100083
  14. Haque A., Pant A.B. Mitigating Covid-19 in the face of emerging virus variants, breakthrough infections and vaccine hesitancy. J. Autoimmun., 2022, vol. 127: 102792. doi: 10.1016/j.jaut.2021.102792
  15. Johansson M.A., Quandelacy T.M., Kada S., Prasad P.V., Steele M., Brooks J.T., Slayton R.B., Biggerstaff M., Butler J.C. SARS-CoV-2 transmission from people without COVID-19 symptoms. JAMA Netw. Open., 2021, vol. 4, no. 1: e2035057. doi: 10.1001/jamanetworkopen.2020.35057
  16. Jung J., Kim S.K., Lee Y., Park S., Lim Y.J., Kim E.O., Kim S.H. Rates of COVID-19 infection among healthcare workers in designated COVID-19 wards and general wards. J. Korean Med. Sci., 2022, vol. 37, no. 43: e308. doi: 10.3346/jkms.2022.37.e308
  17. Khandker S.S., Godman B., Jawad M.I., Meghla B.A., Tisha T.A., Khondoker M.U., Haq M.A., Charan J., Talukder A.A., Azmuda N., Sharmin S., Jamiruddin M.R., Haque M., Adnan N. A systematic review on COVID-19 vaccine strategies, their effectiveness, and issues. Vaccines (Basel), 2021, vol. 9, no. 12: 1387. doi: 10.3390/vaccines9121387
  18. Kyrgyzstan Population 2023. URL: https://worldpopulationreview.com/countries/kyrgyzstan-population (17.04.2023)
  19. Li M., Wang H., Tian L., Pang Z., Yang Q., Huang T., Fan J., Song L., Tong Y., Fan H. COVID-19 vaccine development: milestones, lessons and prospects. Signal Transduct. Target. Ther., 2022, vol. 7, no. 1: 146. doi: 10.1038/s41392-022-00996-y
  20. Matz M., Allemani C., van Tongeren M., Nafilyan V., Rhodes S., van Veldhoven K., Pembrey L., Coleman M.P., Pearce N. Excess mortality among essential workers in England and Wales during the COVID-19 pandemic. J. Epidemiol. Community Health., 2022, vol. 76, no. 7, pp. 660–666. doi: 10.1136/jech-2022-218786
  21. Mittal A., Khattri A., Verma V. Structural and antigenic variations in the spike protein of emerging SARS-CoV-2 variants. PLoS Pathol., 2022, vol. 18, no. 2: e1010260. doi: 10.1371/journal.ppat.1010260
  22. Moreira R.A., Guzman H.V., Boopathi S., Baker J.L., Poma A.B. Characterization of structural and energetic differences between conformations of the SARS-CoV-2 spike protein. Materials (Basel), 2020, vol. 13, no. 23: 5362. doi: 10.3390/ma13235362
  23. National Statistical Committee of the Kyrgyz Republic. Population. URL: https://www.stat.kg/ru/statistics/naselenie (17.04.2023)
  24. Nordström P., Ballin M., Nordström A. Risk of SARS-CoV-2 reinfection and COVID-19 hospitalisation in individuals with natural and hybrid immunity: a retrospective, total population cohort study in Sweden. Lancet Infect. Dis., 2022, vol. 22, no. 6, pp. 781–790. doi: 10.1016/S1473-3099(22)00143-8
  25. Paces J., Strizova Z., Smrz D., Cerny J. COVID-19 and the immune system. Physiol. Res., 2020, vol. 69, no. 3, pp. 379–388. doi: 10.33549/physiolres.934492
  26. Popova A.Yu., Kasymov O.T., Smolenski V.Y., Smirnov V.S., Egorova S.A., Nurmatov Z.S., Milichkina A.M., Suranbaeva G.S., Kuchuk T.E., Khamitova I.V., Zueva E.V., Ivanov V.A., Nuridinova Z.N., Derkenbaeva A.A., Drobyshevskaya V.G., Sattarova G.Z., Kaliev M.T., Gubanova A.V., Zhimbaeva O.B., Razumovskaya A.P., Verbov V.N., Likhachev I.V., Krasnov A.V., Totolian A.A. SARS-CoV-2 herd immunity of the Kyrgyz population in 2021. Med. Microbiol. Immunol., 2022, vol. 211, no. 4, pp. 195–210. doi: 10.1007/s00430-022-00744-7
  27. Popova A.Yu., Totolian A.A. Methodology for assessing herd immunity to the SARS-CoV-2 virus in the context of the COVID-19 andemic. Russian Journal of Infection and Immunity, 2021, vol. 11, no. 4, pp. 609–616. doi: 10.15789/2220-7619-MFA-1770
  28. Population of Kyrgyzstan. URL: https://countrymeters.info/ru/Kyrgyzstan (17.04.2023)
  29. Primorac D., Vrdoljak K., Brlek P., Pavelić E., Molnar V., Matišić V., Erceg Ivkošić I., Parčina M. Adaptive Immune Responses and Immunity to SARS-CoV-2. Front. Immunol., 2022, vol. 13: 848582. doi: 10.3389/fimmu.2022.848582
  30. Ravindra K., Malik V.S., Padhi B.K., Goel S., Gupta M. Asymptomatic infection and transmission of COVID-19 among clusters: systematic review and meta-analysis. Public Health., 2022, vol. 203, pp. 100–109. doi: 10.1016/j.puhe.2021.12.003
  31. Sette A., Crotty S. Adaptive immunity to SARS-CoV-2 and COVID-19. Cell, 2021, vol. 184, no. 4, pp. 861–880. doi: 10.1016/j.cell.2021.01.007
  32. Significant Difference Calculator (z-test). RADAR Research Company. 2020. URL: https://radar-research.ru/ software/z-test_calculator (07.10.2021)
  33. Stokel-Walker C. What we know about COVID-19 reinfection so far. BMJ, 2021, vol. 372: 99. doi: 10.1136/bmj.n99
  34. Totolian A.A., Smirnov V.S., Krasnov A.A., Ramsay E.S., Dedkov V.G., Popova A.Y. COVID-19 case numbers as a function of regional testing strategy, vaccination coverage, and vaccine type. Viruses, 2023, vol. 15: 2181. doi: 10.3390/v15112181
  35. Wald A., Wolfowitz J. Confidence limits for continuous distribution functions. Ann. Math. Stat., 1939, vol. 10, no. 2, pp. 105–118.
  36. Wang H., Zhang Y., Huang B., Deng W., Quan Y., Wang W., Xu W., Zhao Y., Li N., Zhang J., Liang H., Bao L., Xu Y., Ding L., Zhou W., Gao H., Liu J., Niu P., Zhao L., Zhen W., Fu H., Yu S., Zhang Z., Xu G., Li C., Lou Z., Xu M., Qin C., Wu G., Gao G.F., Tan W., Yang X. Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell, 2020, vol. 182, no. 3, pp.713–721.e9. doi: 10.1016/j.cell.2020.06.008
  37. Wang J., Kaperak C., Sato T., Sakuraba A. COVID-19 reinfection: a rapid systematic review of case reports and case series. J. Investig. Med., 2021, vol. 69, pp. 1253–1255. doi: 10.1136/jim-2021-001853
  38. Wheeler S.E., Shurin G.V., Yost M., Anderson A., Pinto L., Wells A., Shurin M.R. Differential antibody response to mRNA COVID-19 vaccines in healthy subjects. Microbiol. Spectr., 2021, vol. 9, no. 1: e0034121. doi: 10.1128/Spectrum.00341-21
  39. Yadav R., Chaudhary J.K., Jain N., Chaudhary P.K., Khanra S., Dhamija P., Sharma A., Kumar A., Handu S. Role of structural and non-structural proteins and therapeutic targets of SARS-CoV-2 for COVID-19. Cells, 2021, vol. 10, no. 4: 821. doi: 10.3390/cells10040821
  40. Zhang Y., Zeng G., Pan H., Li C., Hu Y., Chu K., Han W., Chen Z., Tang R., Yin W., Chen X., Hu Y., Liu X., Jiang C., Li J., Yang M., Song Y., Wang X., Gao Q, Zhu F. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect. Dis., 2021, vol. 21, no. 2, pp. 181–192. doi: 10.1016/S1473-3099(20)30843-4
  41. Zheng J., Deng Y., Zhao Z., Mao B., Lu M., Lin Y, Huang A. Characterization of SARS-CoV-2-specific humoral immunity and its potential applications and therapeutic prospects. Cell. Mol. Immunol. 2022, vol. 19, no. 2, pp. 150–157. doi: 10.1038/s41423-021-00774-w

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Dynamics of COVID-19 incidence and vaccination in the Kyrgyz population

Download (186KB)
3. Figure 2. Shares of seropositive (CGAP) and seronegative (NSG) individuals of different ages throughout seromonitoring

Download (255KB)
4. Figure 3. Changes in peripheral Nc and RBD Ab levels in volunteers of different ages throughout seromonitoring

Download (135KB)
5. Figure 4. Seropositive (CGAP) and seronegative (NSG) volunteers by Kyrgyz region throughout seromonitoring

Download (214KB)
6. Figure 5. Humoral immunity dynamics (Nc, RBD Abs) among volunteers by Kyrgyz region

Download (124KB)
7. Figure 6. Shares of seronegative (NSG) and seropositive (CGAP) volunteers in different professional groups throughout seromonitoring

Download (280KB)
8. Figure 7. Humoral immunity dynamics (Nc, RBD Abs) among volunteers by professional group

Download (144KB)
9. Figure 8. Distribution of Nc Ab levels in the volunteer cohort by age group

Download (199KB)
10. Figure 9. Distribution of RBD Ab levels in the volunteer cohort by age

Download (145KB)
11. Figure 10. Usage structure of vaccines used to immunize the Kyrgyz population against coronavirus throughout seromonitoring

Download (108KB)
12. Figure 11. Structure of coronavirus vaccines administered to participants in the volunteer cohort at the stages of seromonitoring

Download (103KB)
13. Figure 12. Age distribution of vaccine platform usage

Download (164KB)

Copyright (c) 2023 Popova A.Y., Smirnov V.S., Kasymov O.T., Egorova S.S., Nurmatov Z.S., Drozd I.V., Milichkina A.M., Smolensky V.Y., Nuridinova Z.N., Ivanov V.A., Sattarova G.Z., Ramsay E.S., Dzhangaziev B.I., Zueva E.V., Arabiy U.U., Drobyshevskaya V.G., Zhimbaeva O.B., Razumovskaya A.P., Totolian A.A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».