IL-6 and IL-18 cytokine traps in COVID-19
- Authors: Korotaeva A.A.1, Samoilova E.V.1, Chepurnova D.A.1, Pogosova N.V.1, Kuchiev D.T.1, Paleev F.N.1
-
Affiliations:
- National Medical Research Centre of Cardiology named after academician E.I. Chazov
- Issue: Vol 14, No 3 (2024)
- Pages: 411-415
- Section: SHORT COMMUNICATIONS
- URL: https://journal-vniispk.ru/2220-7619/article/view/262057
- DOI: https://doi.org/10.15789/2220-7619-IAI-16651
- ID: 262057
Cite item
Full Text
Abstract
Cytokines are mediators of immunity that regulate inflammation. Intensity of inflammatory process is strongly dependent on the cytokine type and duration of its effect. Interleukin 6 (IL-6) and interleukin 18 (IL-18) play an important role in the initiation and progression of inflammation. Cytokines regulate the inflammatory process in different ways by inducing or inhibiting inflammatory reactions. Functional activity of cytokines is limited by trap molecules whose levels determine initiation of protective or pathological effects of interleukins. Soluble glycoprotein sgp130 functions as a trap for IL-6, while IL-18 is controlled by IL-18 binding protein (IL-18BP). High IL-6 and IL-18 levels were recorded in COVID-19 patients, being associated with unfavorable outcome of the disease. Our objective was to compare sgp130 and IL-18BP levels in patients with different degrees of COVID-19. Retrospective study included 74 COVID-19 patients (40 men and 34 women) aged 63±14 years. The patients were assigned to groups according to severity of lung damage. Group 1 included patients without lung damage; group 2, patients with moderate pneumonia (< 50% lung damage); group 3, patients with severe pneumonia (> 50% lung damage). Plasma levels of cytokines and their trap molecules were determined by quantitative immunoenzyme assay. IL-6 and IL-18 plasma concentrations increased with COVID-19 severity. Ambiguous changes were recorded for their traps. Plasma levels of sgp130 were lower in patients with moderate pneumonia than in patients without lung damage. In patients with severe pneumonia sgp130 plasma concentrations were higher than those in patients with mild pneumonia, being similar to those in patients without lung damage. In contrast to sgp130, IL-18BP levels decreased with COVID-19 severity. Thus, an increase in IL-6 and IL-18 levels parallel to COVID-19 severity is accompanied by ambiguous changes in the levels of their trap molecules. The ratio between the levels of IL-6 and IL-18 and their traps reflects the degree of COVID-19 severity.
Keywords
Full Text
##article.viewOnOriginalSite##About the authors
A. A. Korotaeva
National Medical Research Centre of Cardiology named after academician E.I. Chazov
Email: erihter@mail.ru
DSc (Biology), Chief Researcher
Russian Federation, 121552, Moscow, Academician Chazov str., 15aElena V. Samoilova
National Medical Research Centre of Cardiology named after academician E.I. Chazov
Author for correspondence.
Email: erihter@mail.ru
PhD, Leading Researcher
Russian Federation, 121552, Moscow, Academician Chazov str., 15aD. A. Chepurnova
National Medical Research Centre of Cardiology named after academician E.I. Chazov
Email: erihter@mail.ru
Junior Researcher
Russian Federation, 121552, Moscow, Academician Chazov str., 15aN. V. Pogosova
National Medical Research Centre of Cardiology named after academician E.I. Chazov
Email: erihter@mail.ru
DSc (Medicine), Professor, Deputy General Director for Scientific and Analytical Work and Preventive Cardiology
Russian Federation, 121552, Moscow, Academician Chazov str., 15aD. T. Kuchiev
National Medical Research Centre of Cardiology named after academician E.I. Chazov
Email: erihter@mail.ru
PhD Student
Russian Federation, 121552, Moscow, Academician Chazov str., 15aF. N. Paleev
National Medical Research Centre of Cardiology named after academician E.I. Chazov
Email: erihter@mail.ru
RAS Corresponding Member, DSc (Medicine), Professor, First Deputy General Director, Deputy General Director for Research
Russian Federation, 121552, Moscow, Academician Chazov str., 15aReferences
- Черешнев В.А., Гусев Е.Ю. Иммунология воспаления: роль цитокинов // Медицинская иммунология. 2001. Т. 3, № 3. С. 361–368. [Chereshnev V.A., Gusev E.Yu. Immunology of inflammation: the role of cytokines. Meditsinskaya immunologiya = Medical Immunology (Russia), 2001, vol. 3, no. 3, pp. 361–368. (In Russ.)]
- Dinarello C.A., Novick D., Kim S., Kaplanski G. Interleukin-18 and IL-18 binding protein. Front. Immunol., 2013, no. 4: 289. doi: 10.3389/fimmu.2013.00289
- Jamoussi A., Messaoud L., Jarraya F., Rachdi E., Ben Mrad N., Yaalaoui S., Besbes M., Ayed S., Ben Khelil J. Interleukin 6 prediction of mortality in critically ill COVID19 patients: a prospective observational cohort study. PLoS One, 2023, vol. 18, no.3: e0279935. doi: 10.1371/journal.pone.0279935
- Jostock T., Mullberg J., Ozbek S., Atreya R., Blinn G., Voltz N., Fischer M., Neurath M.F., Rose-John S. Soluble gp130 is the natural inhibitor of soluble interleukin-6 receptor transsignaling responses. Eur. J. Biochem., 2001, vol. 268, no.1, pp. 160–167. doi: 10.10⁴6/j.1432-1327.2001.01867
- Liang D., Ma W., Yao C., Liu H., Chen X. Imbalance of interleukin 18 and interleukin 18 binding protein in patients with lupus nephritis. Cell. Mol. Immunol., 2006, vol. 3, no. 4, pp. 303–306.
- Novick D., Elbirt D., Miller G., Dinarello C.A., Rubinstein M., Sthoeger Z.M. High circulating levels of free interleukin-18 in patients with active SLE in the presence of elevated levels of interleukin-18 binding protein. J. Autoimmun., 2010, vol. 34, no.2, pp. 121–126. doi: 10.1016/j.jaut.2009.08.002
- Rodriguez-Hernandez M.A., Carneros D., Nunez-Nunez M., Coca R., Baena R., Lopez-Ruiz G.M., Cano-Serrano M.E., Martinez-Telleria A., Fuentes-Lopez A., Praena-Fernandez J.M., Garbers Ch., Hernandez-Quero J., Garcia F., Rose-John S., Bustos M. Identification of IL-6 signalling components as predictors of severity and outcome in COVID-19. Front. Immunol., 2022, vol. 13: 891456. doi: 10.3389/fimmu.891456
- Rose-John S. IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. Int. J. Biol. Sci., 2012, vol. 8, no. 9, pp. 1237–1247. doi: 10.7150/ijbs.4989
- Rose-John S. The Soluble Interleukin 6 Receptor: advanced therapeutic options in inflammation. Clin. Pharmacol. Ther., 2017, vol. 102, no. 4, pp. 591–598. doi: 10.1002/cpt.782
- Satış H., Özger H.S., Aysert Yıldız P., Hızel K., Gulbahar Ö., Erbaş G., Aygencel G., Guzel Tunccan O., Öztürk M.A., Dizbay M., Tufan A. Prognostic value of interleukin-18 and its association with other inflammatory markers and disease severity in COVID-19. Cytokine, 2021, no. 137: 155302. doi: 10.1016/j.cyto.2020.155302
- Shao X.T., Feng L., Gu L.J., Wu L.J., Feng T.T., Yang Y.M., Wu N.P., Yao H.P. Expression of interleukin-18, IL-18BP, and IL-18R in serum, synovial fluid, and synovial tissue in patients with rheumatoid arthritis. Clin. Exp. Med., 2009, vol. 9, no. 3, pp. 215–221. doi: 10.1007/s10238-009-0036-2
- Yin J.X., Agbana Y.L., Sun Z.S., Fei S.W., Zhao H.Q., Zhou X.N., Chen J.H., Kassegne K. Increased interleukin-6 is associated with long COVID-19: a systematic review and meta-analysis. Infect. Dis. Poverty, 2023, vol. 12, no. 1: 43. doi: 10.1186/s40249-023-010⁸6-z
