Deciphering crucial genes in pelvic inflammatory disease and their relationship with infertility through systems biology studies

Cover Page

Cite item

Full Text

Abstract

Background. Pelvic inflammatory disease (PID) is an infection of the female reproductive system. PID is usually caused by infection with Chlamydia trachomatis (CT) and Neisseria gonorrhoeae (NG). Women with PID have an increased risk of becoming infertility. The aim of this study was to determine the molecular mechanisms that influence infertility and embryonic development in PID with CT and NG infections.

Materials and methods. Microarray data were extracted from the Gene Expression Omnibus (GEO), and the protein-protein interaction network was constructed using Cytoscape software. Network analysis was performed to identify hub-bottlenecks and sub-networks. The functional mechanisms for critical genes were identified using the webgestalt server. Results. RPL13, EEF1G, JAK2, MYC, IL7R, CD74, IMPDH2, and NFAT5 were identified as crucial genes in protein-protein interactions and gene regulatory networks in CT and NG infections of PID. Ribosome, hematopoietic cell lineage, platelet activation, and Chagas disease, JAK-STAT pathway, eukaryotic translation elongation, Rap1 pathway, apoptosis, protein processing in the endoplasmic reticulum, progesterone-mediated oocyte maturation, and Epstein–Barr virus infection were identified as significant signaling pathways involving in CT and NG infections.

Conclusion. Our model suggests novel critical genes, and functional pathways involved in CT and NG infections, establishing a link between these infections and infertility. However, further studies in vitro and in vivo are needed.

About the authors

F. Saberi

Shahid Beheshti University of Medical Sciences

Email: Hakimehzali@gmail.com

Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Cellular and Molecular Biology Research Center

Iran, Islamic Republic of, Tehran

Z. Dehghan

Shiraz University of Medical Sciences

Email: Hakimehzali@gmail.com

Department of Comparative Biomedical Sciences, School of Advanced Medical Sciences and Technologies, Autoimmune Diseases Research Center

Iran, Islamic Republic of, Shiraz

T. Pilehchi

Shahid Beheshti University of Medical Sciences

Email: Hakimehzali@gmail.com

Student Research Committee, Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Cellular and Molecular Biology Research Center

Iran, Islamic Republic of, Tehran

Sh. Mehdinejadiani

University of Calgary

Email: Hakimehzali@gmail.com

Faculty of Veterinary Medicine, University of Calgary

Canada, Calgary

Z. Taheri

Pavia University

Email: Hakimehzali@gmail.com

Department of Biology and Biotechnology

Italy, Pavia

Hakimeh Zali

Shahid Beheshti University of Medical Sciences

Author for correspondence.
Email: Hakimehzali@gmail.com

PhD, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine

Iran, Islamic Republic of, Tehran

References

  1. Ades A., Price M.J., Kounali D., Akande V., Wills G.S., McClure M.O., Muir P., Horner P.J. Proportion of tubal factor infertility due to chlamydia: finite mixture modeling of serum antibody titers. Am. J. Epidemiol., 2017, vol. 185, no. 2, pp. 124–134. doi: 10.1093/aje/kww117
  2. Al Abdulmonem W., Rasheed Z., Al Ssadh H., Alkhamiss A., Aljohani A.S., Fernández N. Bacterial lipopolysaccharide induces the intracellular expression of trophoblastic specific CD74 isoform in human first trimester trophoblast cells: correlation with unsuccessful early pregnancy. J. Reprod. Immunol., 2020, vol. 141: 103152. doi: 10.1016/j.jri.2020.103152
  3. Amin S.M., Elkafrawy M.A.-S., El-Dawy D.M., Abdelfttah A.H. Relationship between mean platelet volume and recurrent miscarriage. Al-Azhar Assiut Med. J., 2020, vol. 18, no. 4, pp. 421–427. doi: 10.5114/aoms.2013.40095
  4. Brunham R.C., Gottlieb S.L., Paavonen J. Pelvic inflammatory disease. N. Engl. J. Med., 2015, vol. 372, no. 21, pp. 2039–2048. doi: 10.1056/NEJMra1411426
  5. Cai Y., Sukhova G.K., Wong H.K., Xu A., Tergaonkar V., Vanhoutte P.M., Tang E.H. Rap1 induces cytokine production in pro-inflammatory macrophages through NFκB signaling and is highly expressed in human atherosclerotic lesions. Cell Cycle, 2015, vol. 14, no. 22, pp. 3580–3592. doi: 10.1080/15384101.2015.1100771
  6. Ceppi M., Clavarino G., Gatti E., Schmidt E.K., de Gassart A., Blankenship D., Ogier-Denis E., Rodriguez F., Ricciardi-Castagnoli P., Pierre P. Ribosomal protein mRNAs are translationally-regulated during human dendritic cells activation by LPS. Immunome Res., 2009, vol. 5, pp. 1–12. doi: 10.1186/1745-7580-5-5
  7. Darville T. Pelvic inflammatory disease due to Neisseria gonorrhoeae and Chlamydia trachomatis: immune evasion mechanisms and pathogenic disease pathways. J. Infect. Dis., 2021, vol. 224, suppl. 2, pp. S39-S46. doi: 10.1093/infdis/jiab031
  8. Dehghanian M., Yarahmadi G., Sandoghsaz R.S., Khodadadian A., Shamsi F., Mehrjardi M.Y.V. Evaluation of Rap1GAP and EPAC1 gene expression in endometriosis disease. Adv. Biomed. Res., 2023, vol. 12: 86. doi: 10.4103/abr.abr_86_22
  9. Dix A., Vlaic S., Guthke R., Linde J. Use of systems biology to decipher host–pathogen interaction networks and predict biomarkers. Clin. Microbiol. Infect., 2016, vol. 22, no. 7, pp. 600–606. doi: 10.1016/j.cmi.2016.04.014
  10. Dzakah E.E., Huang L., Xue Y., Wei S., Wang X., Chen H., Wang Y., Huang Y., Wang S. Host cell response and distinct gene expression profiles at different stages of Chlamydia trachomatis infection reveals stage-specific biomarkers of infection. BMC Microbiol., 2021, vol. 21, pp. 1–13. doi: 10.1186/s12866-020-02061-6
  11. Fryer R.H., Schwobe E.P., Woods M.L., Rodgers G.M. Chlamydia species infect human vascular endothelial cells and induce procoagulant activity. J. Investig. Med., 1997, vol. 45, no. 4, pp. 168–174.
  12. George Z., Omosun Y., Azenabor A.A., Goldstein J., Partin J., Joseph K., Igietseme J.U., Eko F.O. The molecular mechanism of induction of unfolded protein response by Chlamydia. Biochem. Biophys. Res. Commun., 2019, vol. 508, no. 2, pp. 421–429. doi: 10.1016/j.bbrc.2018.11.034
  13. Ghoreschi K., Laurence A., O’Shea J.J. Janus kinases in immune cell signaling. Immunol. Rev., 2009, vol. 228, no. 1, pp. 273–287. doi: 10.1111/j.1600-065X.2008.00754.x
  14. Gottlieb S.L., Berman S.M., Low N. Screening and treatment to prevent sequelae in women with Chlamydia trachomatis genital infection: how much do we know? J. Infect. Dis., 2010, vol. 201, suppl. 2, pp. S156–S167. doi: 10.1086/652396
  15. Guan J., Han S., Wu J.E., Zhang Y., Bai M., Abdullah S.W., Liu X., Li Y., Zhang Y., Liu X., Hu Y., Li D., Zhang J. Ribosomal protein L13 participates in innate immune response induced by foot-and-mouth disease virus. Front. Immunol., 2021, vol. 12: 616402. doi: 10.3389/fimmu.2021.616402
  16. Guettler J., Forstner D., Gauster M. Maternal platelets at the first trimester maternal-placental interface — Small players with great impact on placenta development. Placenta., 2022, vol. 125, pp. 61–67. doi: 10.1016/j.placenta.2021.12.009
  17. Gusse M., Ghysdael J., Evan G., Soussi T., Méchali M. Translocation of a store of maternal cytoplasmic c-myc protein into nuclei during early development. Mol. Cell. Biol., 1989, vol. 9, no. 12, pp. 5395–5403. doi: 10.1128/mcb.9.12.5395-5403.1989
  18. Hu Q., Bian Q., Rong D., Wang L., Song J., Huang H.-S., Wang L., Wang Y., Wang J., Liu Y., Zhou L. JAK/STAT pathway: Extracellular signals, diseases, immunity, and therapeutic regimens. Front. Bioeng. Biotechnol., 2023, vol. 11: 1110765. doi: 10.3389/fbioe.2023.1110765
  19. Hunt S., Vollenhoven B. Pelvic inflammatory disease and infertility. Aust. J. Gen. Pract., 2023, vol. 52, no. 4, pp. 215–218. doi: 10.31128/AJGP-09-22-6576
  20. Ietta F., Ferro E.A.V., Bevilacqua E., Benincasa L., Maioli E., Paulesu L. Role of the macrophage migration inhibitory factor (MIF) in the survival of first trimester human placenta under induced stress conditions. Sci. Rep., 2018, vol. 8, no. 1: 12150. doi: 10.1038/s41598-018-29797-6
  21. Ito M., Nakasato M., Suzuki T., Sakai S., Nagata M., Aoki F. Localization of janus kinase 2 to the nuclei of mature oocytes and early cleavage stage mouse embryos. Biol. Reprod., 2004, vol. 71, no. 1, pp. 89–96. doi: 10.1095/biolreprod.103.023226
  22. Iyyappan R., Aleshkina D., Ming H., Dvoran M., Kakavand K., Jansova D., Kolar F., Kovarova H., Kucerova D., Vojtek M., Zavadil J., Krivohlavek A., Svitilova J., Vyskocilova A., Vyskot B., Fulka J., Fulka H. The translational oscillation in oocyte and early embryo development. Nucleic Acids Res., 2023, vol. 51, no. 22, pp. 12076–12091. doi: 10.1093/nar/gkad996
  23. Knoke K., Rongisch R.R., Grzes K.M., Schwarz R., Lorenz B., Yogev N., Scharffetter-Kochanek K., Kofler D.M. Tofacitinib suppresses IL-10/IL-10R signaling and modulates host defense responses in human macrophages. J. Invest. Dermatol., 2022, vol. 142, no. 3, pp. 559–570.e6. doi: 10.1016/j.jid.2021.07.180
  24. Köse C., Vatansever S., İnan S., Kırmaz C., Gürel Ç., Erışık D., Yıldız S., Kılıçarslan S. Evaluation of JAK/STAT Signaling Pathway-associated Protein Expression at Implantation Period: An Immunohistochemical Study in Rats. Anatol. J. Gen. Med. Res., 2022, vol. 32, no. 1. doi: 10.4274/terh.galenos.2021.22599
  25. Lad S.P., Fukuda E.Y., Li J., de la Maza L.M., Li E. Up-regulation of the JAK/STAT1 signal pathway during Chlamydia trachomatis infection. J. Immunol., 2005, vol. 174, no. 11, pp. 7186–7193. doi: 10.4049/jimmunol.174.11.7186
  26. Lee N., Kim D., Kim W.-U. Role of NFAT5 in the immune system and pathogenesis of autoimmune diseases. Front. Immunol., 2019, vol. 10: 270. doi: 10.3389/fimmu.2019.00270
  27. Lyons R.A., Saridogan E., Djahanbakhch O. The reproductive significance of human Fallopian tube cilia. Hum. Reprod. Update., 2006, vol. 12, no. 4, pp. 363–372. doi: 10.1093/humupd/dml012
  28. McGee Z.A., Johnson A.P., Taylor-Robinson D. Pathogenic mechanisms of Neisseria gonorrhoeae: observations on damage to human fallopian tubes in organ culture by gonococci of colony type 1 or type 4. J. Infect. Dis., 1981, vol. 143, no. 3, pp. 413–422. doi: 10.1093/infdis/143.3.413
  29. McGlade E.A., Miyamoto A., Winuthayanon W. Progesterone and Inflammatory Response in the Oviduct during Physiological and Pathological Conditions. Cells, 2022, vol. 11, no. 7: 1075. doi: 10.3390/cells11071075
  30. Mohr I., Sonenberg N. Host translation at the nexus of infection and immunity. Cell Host Microbe, 2012, vol. 12, no. 4, pp. 470–483. doi: 10.1016/j.chom.2012.09.006
  31. Nasuhidehnavi A., McCall L.-I. It takes two to tango: How immune responses and metabolic changes jointly shape cardiac Chagas disease. PLoS Pathog., 2023, vol. 19, no. 6: e1011399. doi: 10.1371/journal.ppat.1011399
  32. Negrutskii B., Shalak V., Novosylna O., Porubleva L., Lozhko D., El’skaya A. The eEF1 family of mammalian translation elongation factors. BBA Adv., 2023, vol. 3: 100067. doi: 10.1016/j.bbadva.2022.100067
  33. Ni S., Zhang T., Zhou C., Long M., Hou X., You L., Wang Y., Zhang M., Li Y. Coordinated formation of IMPDH2 Cytoophidium in mouse oocytes and granulosa cells. Front. Cell Dev. Biol., 2021, vol. 9: 690536. doi: 10.3389/fcell.2021.690536
  34. Peipert J.F., Ness R.B., Blume J., Soper D.E., Holley R., Randall H., Hendrix S.L., Amortegui A., Sweet R.L. Clinical predictors of endometritis in women with symptoms and signs of pelvic inflammatory disease. Am. J. Obstet. Gynecol., 2001, vol. 184, no. 5, pp. 856–864. doi: 10.1067/mob.2001.113847
  35. Rödel J., Große C., Yu H., Wolf K., Otto G.P., Liebler-Tenorio E., Menge C., Schneider T., Straube E., Solbach W., Klos A. Persistent Chlamydia trachomatis infection of HeLa cells mediates apoptosis resistance through a Chlamydia protease-like activity factor-independent mechanism and induces high mobility group box 1 release. Infect. Immun., 2012, vol. 80, no. 1, pp. 195–205. doi: 10.1128/IAI.05619-11
  36. Rother M., Gonzalez E., da Costa A.R.T., Wask L., Gravenstein I., Pardo M., Sattler M., Hensel M. Combined human genome-wide RNAi and metabolite analyses identify IMPDH as a host-directed target against Chlamydia infection. Cell Host Microbe., 2018, vol. 23, no. 5, pp. 661–671.e8. doi: 10.1016/j.chom.2018.04.002
  37. Sameni M., Mirmotalebisohi S.A., Dehghan Z., Abooshahab R., Khazaei-Poul Y., Mozafar M., Shabgah A.G., Gholizadeh Navashenaq J. Deciphering molecular mechanisms of SARS-CoV-2 pathogenesis and drug repurposing through GRN motifs: a comprehensive systems biology study. 3 Biotech., 2023, vol. 13, no. 4: 117. doi: 10.1007/s13205-023-03518-x
  38. Scumpia P.O., Kelly-Scumpia K.M., Delano M.J., Weinstein J.S., Cuenca A.G., Al-Quran S., Bruhn K.W., Akira S., Moldawer L.L., Clare-Salzler M.J., Efron P.A. Cutting edge: bacterial infection induces hematopoietic stem and progenitor cell expansion in the absence of TLR signaling. J. Immunol., 2010, vol. 184, no. 5, pp. 2247–2251. doi: 10.4049/jimmunol.0903652
  39. Su H., Na N., Zhang X., Zhao Y. The biological function and significance of CD74 in immune diseases. Inflamm. Res., 2017, vol. 66, pp. 209–216. doi: 10.1007/s00011-016-0995-1
  40. Tao H., Xiong Q., Ji Z., Zhang F., Liu Y., Chen M. NFAT5 is regulated by p53/miR-27a signal axis and promotes mouse ovarian granulosa cells proliferation. Int. J. Biol. Sci., 2019, vol. 15, no. 2, pp. 287–297. doi: 10.7150/ijbs.29273
  41. Varol E. The relationship between mean platelet volume and pelvic inflammatory disease. Wien. Klin. Wochenschr., 2014, vol. 126, pp. 659–660. doi: 10.1007/s00508-014-0587-4
  42. Virant-Klun I., Vogler A. In vitro maturation of oocytes from excised ovarian tissue in a patient with autoimmune ovarian insufficiency possibly associated with Epstein–Barr virus infection. Reprod. Biol. Endocrinol., 2018, vol. 16, no. 1, pp. 1–8. doi: 10.1186/s12958-018-0350-1
  43. Wang C., Kong L., Kim S., Lee S., Oh S., Jo S., Kim J., Lee S. The role of IL-7 and IL-7R in cancer pathophysiology and immunotherapy. Int. J. Mol. Sci., 2022, vol. 23, no. 18: 10412. doi: 10.3390/ijms231810412
  44. Xin L., Xu B., Ma L., Hou Q., Ye M., Meng S., Liu X. Proteomics study reveals that the dysregulation of focal adhesion and ribosome contribute to early pregnancy loss. Proteom. Clin. Appl., 2016, vol. 10, no. 5, pp. 554–563. doi: 10.1002/prca.201500136
  45. Xu H., Su X., Zhao Y., Tang L., Chen J., Zhong G. Innate lymphoid cells are required for endometrial resistance to Chlamydia trachomatis infection. Infect. Immun., 2020, vol. 88, no. 7: e00152-20. doi: 10.1128/IAI.00152-20
  46. Yusuf H., Trent M. Management of pelvic inflammatory disease in clinical practice. Ther. Clin. Risk Manag., 2023, pp. 183–192. doi: 10.2147/TCRM.S350750
  47. Zhang D., Zhu L., Wang F., Li P., Wang Y., Gao Y. Molecular mechanisms of eukaryotic translation fidelity and their associations with diseases. Int. J. Biol. Macromol., 2023, pp. 124680. doi: 10.1016/j.ijbiomac.2023.124680
  48. Zhang J., Chen Z., Fritz J.H., Rochman Y., Leonard W.J., Gommerman J.L., Zhu J. Unusual timing of CD127 expression by mouse uterine natural killer cells. J. Leukoc. Biol., 2012, vol. 91, no. 3, pp. 417–426. doi: 10.1189/jlb.1011501
  49. Zheng X., O'Connell C.M., Zhong W., Nagarajan U.M., Tripathy M., Lee D., Russell A.N., Wiesenfeld H., Hillier S., Darville T. Discovery of Blood Transcriptional Endotypes in Women with Pelvic Inflammatory Disease. J. Immunol., 2018, vol. 200, no. 8, pp. 2941–2956. doi: 10.4049/jimmunol.1701658
  50. Zhu H., Chen J., Liu K., Gao L., Wu H., Ma L., Liu Y., Zhang Y., Wang Y. Human PBMC scRNA-seq–based aging clocks reveal ribosome to inflammation balance as a single-cell aging hallmark and super longevity. Sci. Adv., 2023, vol. 9, no. 26: eabq7599. doi: 10.1126/sciadv.abq7599

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. Workflow of study

Download (545KB)
3. Figure 2. PPIN. A) The results of shared nodes with the highest degree and betweenness Centrality in PPIN of CT (A) and NG (B). The nodes with big size and dark color have highest degree

Download (296KB)
4. Figure 3. The subnetwork obtained from the MCODE app with score > 3 in PPIN CT (A) and NG (B)

Download (208KB)
5. Figure 4. GRN. The results of shared nodes with the highest degree and betweenness Centrality in GRN of CT (A), NG (B), and (C) share nodes between GRN of CT and NG infections. Nodes with bigger sizes have the highest degree. The miRNAs, TFs, and genes are shown with yellow, pink, and yellow colors, respectively

Download (441KB)

Copyright (c) 2025 Saberi F., Dehghan Z., Pilehchi T., Mehdinejadiani S., Taheri Z., Zali H.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».