Identification of Salmonella Enterica Serovar Typhi DNA by loop-mediated isothermal amplification with fluorescent detection
- 作者: Dolgova A.S.1, Kapitonova M.А.1, Shabalina A.V.1, Saitova A.T.1, Polev D.E.1, Makarova M.A.1, Kaftyreva L.A.1, Dedkov V.G.1
-
隶属关系:
- St. Petersburg Pasteur Institute
- 期: 卷 14, 编号 1 (2024)
- 页面: 66-76
- 栏目: ORIGINAL ARTICLES
- URL: https://journal-vniispk.ru/2220-7619/article/view/256767
- DOI: https://doi.org/10.15789/2220-7619-IOS-17545
- ID: 256767
如何引用文章
全文:
详细
Introduction. Real-time PCR may be used along with loop isothermal amplification method (LAMP) allowing to conduct the study in 30–40 minutes to diagnose typhoid fever. Several LAMP assay variations for detecting Salmonella enterica serovar Typhi have been described. The studies report that relevant primers were tested on strains specific for Malaysia and China. We attempted to evaluate the LAMP primers described above for identifying S. Typhi strains specific for the Russian Federation and compare their sensitivity and specificity with each other.
Materials and methods. A comparative in silico analysis of target sequences was carried out both in the open NCBI database and among the genetic sequences of collection strains at the St. Petersburg Pasteur Institute. Several sets of primers for LAMP amplification of various S. Typhi genome regions were tested. The tested primers amplify the following fragments: SalTyp1 — region of the STY1607 gene, SalTyp2 — region of the STY2879 gene, SalTyp3 — region of the STBHUCCB_38510 gene of the PapD chaperone.
Results. In silico analysis of LAMP primers showed that only the SalTyp 3 set has strict specificity for Salmonella enterica serovar Typhi. For the SalTyp 1 and SalTyp 2 an opportunity of false-positive reactions with some E. coli strains was shown. A LAMP method for DNA fluorescent detection of the typhoid fever causative agent was chosen. Assay has been based on a marker gene termed STBHUCCB_38510 and amplification with six specific primers. The detection limit was 20 copies/reaction in reference plasmids and the reaction time lasted for 35 minutes. The specificity of the method was tested on DNA specimens of 20 S. Typhi isolates and 90 strains of other heterologous bacteria from 24 different species. No false positive or false negative results were identified.
Conclusion. The developed method can be used in clinical practice for laboratory confirmation of typhoid fever diagnosis as a part of epidemiological monitoring of environmental objects as well as food products.
作者简介
A. Dolgova
St. Petersburg Pasteur Institute
编辑信件的主要联系方式.
Email: dolgova@pasteurorg.ru
PhD (Biology), Head of Laboratory for Molecular Genetics of Pathogens
俄罗斯联邦, St. PetersburgM. Kapitonova
St. Petersburg Pasteur Institute
Email: dolgova@pasteurorg.ru
Junior Researcher, Laboratory for Molecular Genetics of Pathogens
俄罗斯联邦, St. PetersburgA. Shabalina
St. Petersburg Pasteur Institute
Email: dolgova@pasteurorg.ru
Junior Researcher, Laboratory for Molecular Genetics of Pathogens
俄罗斯联邦, St. PetersburgA. Saitova
St. Petersburg Pasteur Institute
Email: dolgova@pasteurorg.ru
Research Laboratory Assistant, Metagenomic Research Group
俄罗斯联邦, St. PetersburgD. Polev
St. Petersburg Pasteur Institute
Email: dolgova@pasteurorg.ru
PhD (Biology), Head of Metagenomic Research Group
俄罗斯联邦, St. PetersburgM. Makarova
St. Petersburg Pasteur Institute
Email: dolgova@pasteurorg.ru
DSc (Medicine), Head of Laboratory of Enteric Infections
俄罗斯联邦, St. PetersburgL. Kaftyreva
St. Petersburg Pasteur Institute
Email: dolgova@pasteurorg.ru
DSc (Medicine), Leading Researcher, Typhoid Epidemiology Research Group
俄罗斯联邦, St. PetersburgV. Dedkov
St. Petersburg Pasteur Institute
Email: dolgova@pasteurorg.ru
PhD (Medicine), Deputy Director for Scientific Work
俄罗斯联邦, St. Petersburg参考
- Abdullah J., Saffie N., Sjasri F.A., Husin A., Abdul-Rahman Z., Ismail A., Aziah I., Mohamed M. Rapid detection of Salmonella Typhi by loop-mediated isothermal amplification (LAMP) method. Braz. J. Microbiol., 2015, vol. 45, no. 4, pp. 1385–1391. doi: 10.1590/s1517-83822014000400032
- Ali A., Haque A., Haque A., Sarwar Y., Mohsin M., Bashir S., Tariq A. Multiplex PCR for differential diagnosis of emerging typhoidal pathogens directly from blood samples. Epidemiol. Infect., 2009, vol. 137, no. 1, pp. 102–107. doi: 10.1017/S0950268808000654
- Ali K., Zeynab A., Zahra S., Akbar K., Saeid M. Development of an ultra rapid and simple multiplex polymerase chain reaction technique for detection of Salmonella typhi. Saudi Med. J., 2006, vol. 27., no. 8, pp. 1134–1138.
- Ambati S.R., Nath G., Das B.K. Diagnosis of typhoid fever by polymerase chain reaction. Indian J. Pediatr., 2007, vol. 74, no. 10, pp. 909–913. doi: 10.1007/s12098-007-0167-y
- Bhutta Z.A. Current concepts in the diagnosis and treatment of typhoid fever. BMJ, 2006, vol. 333, no. 7558, pp. 78–82. doi: 10.1136/bmj.333.7558.78
- Crump J.A., Mintz E.D. Global trends in typhoid and paratyphoid fever. Clin. Infect. Dis., 2010, vol. 50, vol. 2, pp. 241–246. doi: 10.1086/649541
- Dong B., Galindo C.M., Shin E., Acosta C.J., Page A.L., Wang M., Kim D., Ochiai R.L., Park J., Ali M., Seidlein L.V., Xu Z., Yang J., Clemens J.D. Optimizing typhoid fever case definitions by combining serological tests in a large population study in Hechi City, China. Epidemiol. Infect., 2007, vol. 135, no. 6, pp. 1014–1020. doi: 10.1017/S0950268806007801
- Егорова С.А., Кулешов К.В., Кафтырева Л.А., Матвеева З.Н. Чувствительность к антибиотикам, механизмы резистентности и филогенетическая структура популяции S. typhi, выделенных в 2005–2018 гг. в Российской Федерации // Инфекция и иммунитет. 2020. T. 10, № 1. С. 99–110. [Egorova S.A., Kuleshov K.V., Kaftyreva L.A., Matveeva Z.N. The antimicrobial susceptibility, resistance mechanisms and phylogenetic structure of S. typhi isolated in 2005–2018 in the Russian Federation. Infektsiya i immunitet = Russian Journal of Infection and Immunity, 2020, vol. 10, no. 1, pp. 99–110. (In Russ.)] doi: 10.15789/10.15789/2220-7619-ASM-1171
- Fan F., Du P., Kan B., Yan M. The development and evaluation of a loop-mediated isothermal amplification method for the rapid detection of Salmonella enterica serovar Typhi. PLoS One, 2015, vol. 10, no. 4: e0124507. doi: 10.1371/journal.pone.0124507
- Fan F., Yan M., Du P., Chen C., Kan B. Rapid and sensitive salmonella typhi detection in blood and fecal samples using reverse transcription loop-mediated isothermal amplification. Foodborne Pathog. Dis., 2015, vol. 12, no. 9, pp. 778–786. doi: 10.1089/fpd.2015.1950
- Francois P., Tangomo M., Hibbs J., Bonetti E.J., Boehme C.C., Notomi T., Perkins M.D., Schrenzel J. Robustness of a loop-mediated isothermal amplification reaction for diagnostic applications. FEMS Immunol. Med. Microbiol., 2011, vol. 62, no. 1, pp. 41–48. doi: 10.1111/j.1574-695X.2011.00785.x
- Kawano R.L., Leano S.A., Agdamag D.M. Comparison of serological test kits for diagnosis of typhoid fever in the Philippines. J. Clin. Microbiol., 2007, vol. 45, no. 1, pp. 246–247. doi: 10.1128/JCM.01403-06
- Levy H., Diallo S., Tennant S.M., Livio S., Sow S.O., Tapia M., Fields P.I., Mikoleit M., Tamboura B., Kotloff K.L., Lagos R., Nataro J.P., Galen J.E., Levine M.M. PCR method to identify Salmonella enterica serovars Typhi, Paratyphi A, and Paratyphi B among Salmonella isolates from the blood of patients with clinical enteric fever. J. Clin. Microbiol., 2008, vol. 46, no. 5, pp. 1861–1866. doi: 10.1128/JCM.00109-08
- Mori Y., Kitao M., Tomita N., Notomi T. Real-time turbidimetry of LAMP reaction for quantifying template DNA. J. Biochem. Biophys. Methods., 2004, vol. 59, no. 2, pp. 145–157. doi: 10.1016/j.jbbm.2003.12.005
- Murdoch D.R., Woods C.W., Zimmerman M.D., Dull P.M., Belbase R.H., Keenan A.J., Scott R.M., Basnyat B., Archibald L.K., Reller L.B. The etiology of febrile illness in adults presenting to Patan hospital in Kathmandu, Nepal. Am. J. Trop. Med. Hyg., 2004, vol. 70, no. 6, pp. 670–675. doi: 10.4269/ajtmh.2004.70.670
- Naheed A., Ram P.K., Brooks W.A., Mintz E.D., Hossain M.A., Parsons M.M., Luby S.P., Breiman R.F. Clinical value of Tubex and Typhidot rapid diagnostic tests for typhoid fever in an urban community clinic in Bangladesh. Diagn. Microbiol. Infect. Dis., 2008, vol. 61, no. 4, pp. 381–386. doi: 10.1016/j.diagmicrobio.2008.03.018
- Nakhla I., El Mohammady H., Mansour A., Klena J.D., Hassan K., Sultan Y., Pastoor R., Abdoel T.H., Smits H. Validation of the Dri-Dot Latex agglutination and IgM lateral flow assays for the diagnosis of typhoid fever in an Egyptian population. Diagn. Microbiol. Infect. Dis., 2011, vol. 70, no. 4, pp. 435–441. doi: 10.1016/j.diagmicrobio.2011.03.020
- Notomi T., Okayama H., Masubuchi H., Yonekawa T., Watanabe K., Amino N., Hase T. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res., 2000, vol. 28, no. 12: E63. doi: 10.1093/nar/28.12.e63
- Olsen S.J., Pruckler J., Bibb W., Nguyen T.M., Tran M.T., Nguyen T.M., Sivapalasingam S., Gupta A., Phan T.P., Nguyen T.C., Nguyen V.C., Phung D.C., Mintz E.D. Evaluation of rapid diagnostic tests for typhoid fever. J. Clin. Microbiol., 2004, vol. 42, no. 5, pp. 1885–1889. doi: 10.1128/JCM.42.5.1885-1889.2004
- Petit P.L., Wamola I.A. Typhoid fever: a review of its impact and diagnostic problems. East Afr. Med. J., 1994, vol. 71, no. 3, pp. 183–188.
- Singh A., Verma H.N., Arora K. Surface plasmon resonance based label-free detection of Salmonella using DNA self assembly. Appl. Biochem. Biotechnol., 2015, vol. 175, no. 3, pp. 1330–1343. doi: 10.1007/s12010-014-1319-y
补充文件
