. .*, . ., . ., .

*safiyat.balaeva@mail.ru

: , , , ,

SYNTHESIS AND PROPERTIES OF EPOXY OLIGOMERS CONTAINING HEXACHLOROETHANE

Balaeva S.M., Beeva D.A., Altueva A.M., Shetov R.A.

Kabardino-Balkarian State University

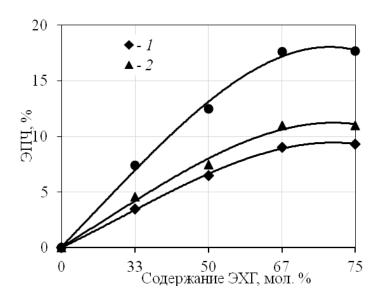
The article provides information on the patterns of synthesis of epoxy oligomers from various phenols containing hexachloroethane with good technological properties. The influence of various factors on the duration of the process, the yield of reaction products, and the number of epoxy groups in synthesized chlorine-containing epoxy oligomers has been studied. The results of kinetic studies of the synthesis of epoxy resins are presented. The resulting new filling compounds had good thermal stability.

Keywords: epoxidation, production of epoxy oligomers, synthesis kinetics, thermal stability of adhesives

2,2- (4-) , (), (), ().

. ., . ., . ., . .

$$HO \longrightarrow OH + NaOH \longrightarrow HO \longrightarrow ONa + H_2O$$

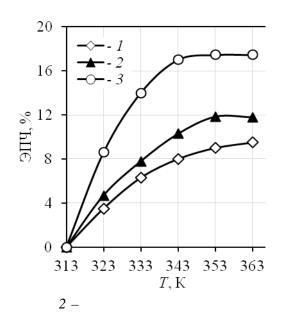

$$HO \longrightarrow OH + 2NaOH \longrightarrow NaO \longrightarrow ONa + 2H_2O$$

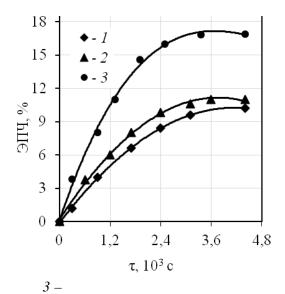
:

 $NaO-R-O-CCl_2-CCl_2-O-R-ONa+2CH_2-CH-CH_2Cl \longrightarrow$

$$\begin{array}{c} O \\ \longrightarrow 2\text{CH}_2\text{-CH-CH}_2\text{-O-R-O-CCl}_2\text{-CCl}_2\text{-O-R-O-CH}_2\text{-CH-CH}_2 + 2\text{NaCl} \end{array}$$

1

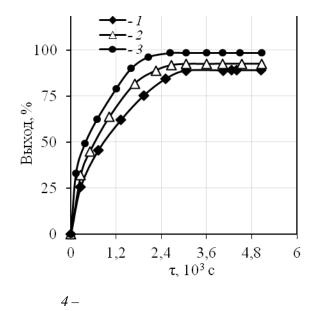

1 - : 1 - + (= 368); 2 - 2 + (= 348); 3 - 2 + (= 343)

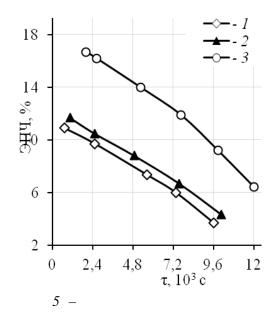

1,

348

368 . 2 3,

(1).


 $; 2-2 + 3,6 \times 10^3$; 1-2 + (= 368); 2-2 (= 348); 3-2 + (= 343 : 1 – 2 3 - 2(=343)

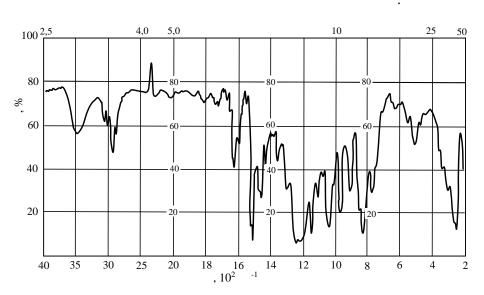

1 –

	2	
1	2,74	0,66
2	5,89	-0,11
3	9,44	-0,79
4	9,96	-0,89

(4, 5) (2).

37

(368


(343)

$$: I-2 + (368);$$

 $2-2 + (348); 3-2 + (343)$
 $: I-2 + (348); 3-2 + ($

2 -

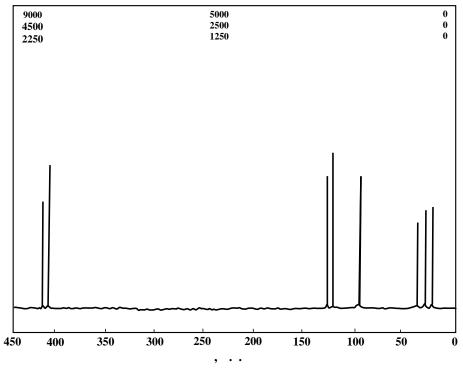
	,	, , 10 ³
+	348	3,0
+	368	3,6
+	348	2,4
+	343	2,4

- (6)

6- - 2 +

(3).

3 –


	-1	
	1500–1600	
	3200–3600	
	I240–1250	
	1160–1140	
3 3	2970	
	910–920	
C-Cl	770	

7 .

123,6; 130,3 . . . 78,02; 98,1 . .

.

R:

7 – 13 2

-(4).

. 90–98 %,

4 –

		%'	¢	n_{20}	323 ,	*	*%,	(60 . 100°),%	*	*н	Cl_*
2	+	98		0,988	1,57	748,14 778,752	10,18 11,752	0,44	65,40 62,3098	6,46 5,229	19,63 19,359
2	+	98	353	-	_	712,52 732,527	9,98 11,087	0,77	51,47 49,498	4,78 3,375	16,77 18,263
2	+	97		0,173	1,58	487,22 496,174	17,45 17,551	0,90	49,74 48,4198	4,02 3,656	26,58 28,581
2	+	96		1,163	1,59	491,54 496,174	16,97 17,351	0,94	48,41 48,4198	5,02 3,656	25,97 28,581

* - ; -

5 . . .

· ·

5 –

			'	'	
2 +					
2 +					
2 +					
2 +					

- ; - ; -

,

- -

40