STUDY OF THE PROCESS OF GELLING OF APPLE MASS

Begieva M.B., Kambarov M.A., Begiev .Kh., Paritov A.Yu., Kharaev A.M.

Kabardino-Balkarian State University

The results of the study of the biochemical composition of the apple mass of the Golden Delicious and Idared varieties grown in the Kabardino-Balkarian Republic, before and after long-term storage (six months or more), at a temperature of +2-5 °C are discussed. The processes of gelation and the possibility of obtaining gelatinous products with functional properties, taking into account the shelf life of the products and post-storage effects are studied. The content of vitamin C and pectin substances before and after long-term storage (six months or more) are determined.

Keywords: apple mass, vitamin C, pectin, gelling processes

42

```
2-5°,
                                                            )
   1.
                                                                               (
                                                                                                     ).
   2.
   3.
                                                                                              [3–6].
                                                                                               »,
                                    [7–9].
   1)
                20
                                                                                            100
   2)
                 1
   3)
                             5 %
                10-15
                                                                             (1
                                                                                             28
                                                                        1
  ).
                                                                                       1
                                                                                                   (100
)
                                                                          ),
                                                                                          500
                25
                                                                                                20
                                                 2–3
                                                                                             0,05
                                            1
                        ).
                                                                             1).
                                                                  (
      1 –
             5,8
                                            ) = 5.8 \times 0.875 = 5.075 ;
                                                                                        1,5 %
                               m (
                                                    =5,075\times22=111,175
                                m (
                                                                                         101,5
```

43

« » 32,8 % - 30,5 %

(2).

26,2 %, -

17,7 %

2 –

		, /100		, /100		
«	*	5,5	3,7	75,2	52,32	
«	»	6,5	4,8	82,32	68,4	

- 0,5 %-

4 t=65 °

1:5,

96 %-

.

, 3.

3 –

		, %	,%		, %		
		, 70		, 70			
		0.70 . 0.01	0.77.0.01	0.45.0.01		25	
«	»	$0,78\pm0,01$	$0,75\pm0,01$	0,45±0,01	66	35	
«	»	0,88±0,01	0,85±0,01	0,55±0,01	66	35	

3 36 %

7 %.

D- . ()

•

4 –

		, %				
«		78	15,75	2,5±0,1	2,7±0,1	
	»					
*	»	88	19,25	2,1±0,1	2,5±0,1	

, 28 %,

- 2,7 2,5, . .,

--

,

7 %.

,

,

: 2,5 %.

5 –

				, %			, %
«		11,07±0,1		18 ±0,1		0,087±0,01	0,076±0,01
	»	()		()			
		6,57±0,1		6,57±0,1			
		()		()			
		6,84±0,002		6,184±0,002			
		()	()		
«	»	11,07±0,1		18 ±0,1()	0,087±0,01	0,076±0,01
		()		6,57±0,1			
		6,57±0,1		()			
		()		6,184±0,002			
		6,84±0,002		(
		()				

5, (%)

(1) [10].

E 0,9 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0 0,75 0,80 0,85 0,90 0,95 1,00 C, %

1 – « »(1) « »(2)

45

32000, 159,2. 1. . 2018. 58 . 2. // , 2008. . 105–108. 3. . 2017. 5. . 59–63. 4.): , 2004. 18 . 5. 2288-2012. , 2013. 12 . « », 1998. 198 . 7. .: , 1984. 98 . 8. 42-123-4717-88. 9. . .: , 1998. 102 . 29186-91. . .: - , 2014. 15 .