. .*,

*musaev41@mail.ru

INFLUENCE OF THE CHEMICAL STRUCTURE OF DIPHENOLS ON THE COURSE OF HIGH-TEMPERATURE NONEQUILIBRIUM POLYCONDENSATION REACTIONS IN THE SYNTHESIS OF POLYARYLATES AND AROMATIC POLYETHERS

Musaev Yu.I., Musaeva E.B.

Kabardino-Balkarian State University

Potentiometric titration and PMR spectroscopy in non-aqueous media determined quantitative physicochemical parameters reflecting the reactivity of diphenols and their conjugated diphenoxide anions. A large series of correlation relationships was obtained between the above parameters and data of kinetic studies of reactions of nonequilibrium high-temperature polyesterification in the synthesis of polyarylates and aromatic polyethers. The results of experimental and theoretical studies were the establishment of the mechanisms of these reactions.

Keywords: non-aqueous titration, PMR spectroscopy, Hammett equation

. .,

OH) [3], 1 2 -ОН) [3]. 32 1) (), (-=5:1) (). 1 – () 1,4- (4-1,3- (4-3 2,2 - (4-4 (4-5 4,4 -(5- -2-6 3,3- (4-7 8 (4-9 3,3- (4-10 9,9- (4--10 11 2- -3,3 - (4-12 (4-) 13 9,9- (4-14 3,4- (4-15 2,2- (4-16 3,3- (4-17 2,2- (4-) 18 1,1- (4-) 19 3,9- (4-) 20 (4-) 21 (4-22 (4-3,3 -23 -4,4 -24 2,2- (3,5-) 25 (3- -4-(3--4-26 27 1,1- (3--4-28 2,2- (3--4-) 29 (3- -4-3,3- (3-30 -4-31 3,3- (5--2--4-2,2- (3-32 -4-

66

• • •

(1, 2 :) (1, 2 -). (2).

2 - -

		ΔK_1	ΔpK_2	ΔpK_1	$\Delta p K_2$	$\sum \sigma_1^*$	$\Sigma \sigma_2^*$	pK ₁	pK_2	$\delta_{ m OH}$	pK ₁
				:							H ₂ O
		I.		-		I.					
1	-	3,16	3,56	1,97	2,33	0,69	0,57	11,20	12,50	_	8,39
2	-	3,16	3,56	1,95	2,28	0,69	0,57	-	_	-	8,39
3		3,22	3,59	2,00	2,40	0,67	0,56	11,30	13,00	_	8,43
4		3,25	_	2,20	2,74	0,66	_	11,26	13,24	10,52	8,45
5		4,27	4,72	3,09	_	0,37	0,23	12,00	14,48	-	9,11
6	-	4,37	4,71	_	_	0,34	0,24	_	_	9,80	9,16
7		4,82	5,07	4,42	4,82	0,21	0,13	_	_	9,52	9,46
8		4,97	5,39	_	_	0,16	0,04	12,83	14,77	9,57	9,56
9		5,10	5,37	4,52	5,00	0,13	0,05	_	_	9,42	9,64
10		5,13	5,45	4,52	5,01	0,12	0,02	13,00	14,50	9,47	9,63
11		5,16	5,54	4,47	4,90	0,11	0,00	_	_	_	9,68
12		5,65	5,95	5,00	5,47	-0,03	-0,12	_	_	9,22	9,99
13		5,74	6,06	5,09	5,39	-0,06	-0,15	_	-	9,14	10,05
14		5,75	5,93	_	ı	-0,06	-0,11	ı	-	ı	10,05
15		5,79	6,01	5,42	5,69	-0,07	-0,14	ı	ı	ı	10,08
16		5,92	6,17	5,46	5,88	-0,11	-0,18	13,60	15,50	9,07	10,17
17		5,92	6,22	5,48	5,89	-0,11	-0,20	13,60	15,70	9,10	10,17
18		5,94	6,14	5,35	5,74	-0,12	-0,18	13,65	15,55	9,05	10,18
19		5,98	6,25	5,55	5,89	-0,13	-0,21	13,80	15,70	9,02	10,20
20		5,98	6,24	5,50	5,88	-0,13	-0,20	13,75	15,65	9,02	10,21
21		6,00	6,25	_	1	-0,14	-0,21	ı	1	9,02	10,23
22		6,02	6,27	5,39	5,74	-0,14	-0,21	1	_	9,02	10,23
				-							
23		_	1	0,08	1,48	_	_	9,50	11,20	ı	_
24		2,08	2,49	1,22	1,49	0,84	0,74	9,76	11,42	10,80	-
25		3,49	3,92	_	_	0,48	0,38	-	_	ı	-
26		4,11	4,46	_	_	0,34	0,26	_	_	9,93	-
27		4,30	4,74	3,88	4,34	0,28	0,19	12,09	13,98	9,87	_
28		4,40	4,75	3,90	4,35	0,27	0,19	12,11	13,99	9,78	_
29		4,60	4,93	_		0,23	0,15	-		9,69	_
30	-	5,16	5,35	4,87	5,17	0,09	0,04	_	_	9,43	_
31		5,34	5,49	5,18	5,57	0,05	0,01	_	_	_	_
32		6,36	6,62	6,33	6,59	-0,20	-0,26	14,00	16,09	8,91	_

^{*} $\Sigma \sigma_1 = \Sigma \sigma$ (HO-C₆H₄-M-); $\Sigma \sigma_2 = \Sigma \sigma$ (O-C₆H₄-M-).

67

· ·,

3 – ,

,

		R^	n	-; -*
1	$\Delta p K_{2(-)} = 0.9454 \Delta p K_{1(-)} + 0.5793$	0,997	30	-, -
2	$\delta_{OH} = -0.524 \Delta p K_{1(-)} + 12.161$	0,992	12	-
3	$\delta_{\text{OH}} = -0.4541\Delta p K_{1(-)} + 11.195$	0,998	5	-
4	$\Delta p K_{1 (-+-)} = 1,2413 \Delta p K_{1 (-)} - 1,9265$	0,996	16	-
5	$\Delta p K_{1(}$ $_{+}$ $_{)}=1,1981 \Delta p K_{1(}$ $_{)}-1,2872$	0,999	7	-
6	$pK_{1(}) = 0.8922\Delta pK_{1(}) + 8.3601$	0,994	8	-
7	$pK_{2(}) = 1,0603\Delta pK_{2(}) + 9,036$	0,958	7	-
8	$\Delta p K_{2(}$ ₊ ₎ = 1,2628 $\Delta p K_{2(}$ ₎ - 1,6113	0,994	6	-
9	$\Delta p K_{2(}$ $_{+}$ $_{)}=1,3142 \Delta p K_{2(}$ $_{)}-2,3182$	0,991	16	-
10	$pK_{1(}) = 0.7009\Delta pK_{1(}) + 9.82$	0,997	8	-
11	$pK_{1(}) = 0.7535 \Delta pK_{1(} +) + 9.17$	0,986	3	-
12	$pK_{2(}$) = 0,7875 Δ p $K_{2(}$ +) + 10,91	0,974	7	-
13	$pK_{2(}$) = 0,9364 Δ p $K_{2(}$) + 9,92	0,999	3	-
14	$\Delta p K_{1(}$ $_{+}$ $_{)} = -4,9453 \Sigma \sigma_{1} + 5,3369$	0,998	7	-
15	$\Delta p K_{1(}$ $_{+}$ $_{)} = -4,2846 \sum \sigma_{1} + 4,948$	0,996	16	-
16	$\Delta p K_{2(}$ $_{+}$ $_{)} = -5,2071 \sum \sigma_{2} + 5,3747$	0,994	6	-
17	$\Delta p K_{2(}$ ₊ ₎ = -4,5542 $\sum \sigma_2$ + 4,954	0,996	16	-
18	$\delta_{OH} = 1,7007 \Sigma \sigma_1 + 9,2503 \text{ (t = 34 °C)}$	0,986	13	-
19	$\delta_{OH} = 1,4462 \Sigma \sigma_1 + 9,2829 \text{ (t = 25 °C)}$	0,989	6	-
20	$\delta_{OH} = 1.9 \Sigma \sigma_1 + 9.2864 \text{ (t = 34 °C)}$	0,994	5	-
21	$\delta_{OH} = 1,429 \Sigma \sigma_1 + 9,2849 \text{ (t = 25 °C)}$	1,0	6	-

* . R^- , n-

· , - , - .

 $(lg \ k = + c)$. 0,53+0,86

68

...

	$S_N 2$		$S_{N}2_{Ar}$, = 2,22 - 3,79 [4].						
	,		-			-		-	
- ,) [5].		,			(,	
) [3].									
1.									
2. Schulz	: 02.00.06. e S.R., Baron	., 1973. 200 . A.L. The Kinet		on Polyconde	ensation (of Aromat	ic Po	olyethers // In:	
		Polymerization Pi							
		.969 692–702.			C			•	
3.	,	,	٠.,	,		 . 1976.	8.	. 2133–2134.	
4.				:				, : 02.00.06	
, 2004.	350 .								
5.	,	,				-		- // -	
-	-		. 2011.	3 (41).	. 234–24	1.			