1 ..., ² ...*

1

*gerasin@ips.ac.ru

· , , , , , ,

ASSESSMENT OF THE EFFICACY OF GUANIDINE-CONTAINING BIOCIDAL ADDITIVES TOWARDS DIFFERENT MICROORGANISMS

¹Htoo Myat K.K., ²Gerasin V.A.

¹D.I. Mendeleev Russian Chemical-Technological University ²A.V. Topchiev Institute of Petrochemical Synthesis RAS

Effect of a number of cationic polyelectolytes on the biofouling and physical and mechanical properties of polymer material based on styrene-acrylic water dispersion has been studied. The antifouling properties of the material were tested against gram-positive and gram-negative bacteria as well as micromycetes. The effective concentrations of the additives have been determined for inhibiting the formation of biofilm on the polymer surface.

Keywords: polymer, paint, coating, biocide, polyelectrolyte

. .,

```
[6].
            [7]
                                             Aspergillus niger.
                                                                                     101» (
                                                   50±1 %,
                                                                                        0,09
                   1,04 /
                                                         20
7,5–9,0,
                           [8].
                      [9],
                                                                  [10].
              «
                                                                :
                                                    ),
                                        (
   [6];
                                                                                          ),
                                          [6];
                                                    ),
              20.20.14-001-24851300-2018 -
                        [11].
                                                                                      Preventol D6
                                 101»
                                                                                  (1, 3, 5 %
                                                                                         20
                                                     5 %,
                   7 %
                                                                                              -246.
                                                          8420-2022
                                                                                  )
                                     Wester FPG-40 c
                                                                       1
                           35094 -2024 (I - \, , VII -
                                                                 ).
                                        54586-2011.
      51694-2000.
                                   15140-78 (
                                                                -0
                                                                                       -5
                                                                                                 ).
```

```
...
```

```
101»)
       (
                                                0.7
                                      100°
                                                         0,66
60
                   0,28-0,44
                                                                       1
                                                                                                     Ti-
                                               10 \times 3
                                     20
ratest 2000
                                         /
                                                          10
                                     1 .
                                                                 Pseudomonas aeruginosa,
                  Staphylococcus aureus,
                                                                            Candida lipolytica)
                                                        3
                                           LB
                                                                               LB
                                                5
                                              50
                                                                       LB.
                30°
                                 (150 /
                                             ).
                                                                           2,5
                                                                                                  LB
                               (
                                                         ).
                 4
                            :
                                                                                             (
                                       ).
                                                                                            50
                                                                                                 30 °
           (150 /
                       ).
                                      ) 1%-
( ).
                 1
                                                   15
                                                                     1,5
                                                                            96 %-
                                                                       40
                                                                                               590
                                                                          -2
                                                2,5
                                                                                             101»
                                                                 1).
                                                       (
        1 –
                                           101»
                                                              , % (
                                       0
                                                                          3
                                                                                           5
                                                        1
                                                                     -246,
                                      20
                                                        21
                                                                         21
                                                                                          21
                                      20
                                                        21
                                                                         21
                                                                                          22
                                      20
                                                        22
                                                                         23
                                                                                          27
```

. .,

3 % 5 % 20 % 7 1, 3, 5 %). 101» 2. 2 – 101» « , % 0 3 5 1 17–19 19–22 20-24 20-26 НН HB НН НН 1 1 1 0 II II I III 20-21 21–25 20-27 20-23 HB НН НН 2H 1 1 1 0 II II I IV 17–19 17-21 16-21 18–25 2H HB НН НН 1 1 0 2 II III II IV

3.

. . .

3 – -

, %	,	,	, %
«	101»		
0	114±2	14±0,4	470±40
«	101» +		
1	72±1	10±0,3	445±25
3	72±3	10±0,9	439±20
5	75±4	10±0,4	441±25
«	101» + /	,	
1	58±7	12±0,5	460±35
3	84±12	12±0,5	407±20
5	126±5	12±2,0	386±13
«	101» +	-	
1	143±25	15±1,7	392±20
3	117±1	13±1,2	374±25
5	127±17	14±0,9	385±30

3,
- ; , (
).

(
1–3),
Preventol D6.

4.

4 – , ,

	P. aeruginosa	C. lypolitica	S. aureus		
		,			
«	101»				
_	88	82	90		
«	101» + Preventol D6				
	11	62	13		
«	101» +				
1 %	10	0	6		
«	101» + /				
3 %	0	41	26		
«	101» +	-			
1 %	39	29	20		
3 %	75	0	75		
5 %	52	0	65		

. .,

Preventol D6 P. aeruginosa S. aureus C. lypolitica. C. Lypolitica (). (1 % .) Aspergillus niger [8] 101», 5 % () 101». 1...3 % C. lypolitica, P. aeruginosa. 1 %

- 1. Paz-Villarraga C.A., Castro Í.B., Fillmann G. Biocides in antifouling paint formulations currently registered for use // Environmental Science and Pollution Research. 2022. V. 29. P. 30090–30101.
- 2. Holtz R.D., Lima B.A., Souza Filho A.G., Brocchi M., Alves O.L. Nanostructured silver vanadate as a promising antibacterial additive to water-based paints // Nanomedicine: Nanotechnology, Biology and Medicine. 2012. V. 8, N 6. P. 935–940.
- 3. Zhurina M.V., Bogdanov K.I., Mendeleev D.I., Tikhomirov V.A., Pleshko E.M., Gannesen A.V., Kurenkov V.V., Gerasin V.A., Plakunov V.K. Phylogenetic constitution and survival of microbial biofilms formed on the surface of polyethylene composites protected with Polyguanidine biocides // Coatings. 2023. V. 13, N 6. P. 1–21.

...

6. Sivo	ov N.A., Kleshchev	a N.A., Value	ev I.L., Valuev L	.I. Biocidal Co	opolymers of Met	hacryloylgua
nidine Hydrod	chloride with Metha	crylamide and	l Diallyldimethyla	ımmonium Chl	oride // Polymer S	cience. Series
B. 2021. V. 63	3. P. 531–535.					
7.	,					
	-		//		-	
	14, 3. 20	24 97–103				
8. Poth	U., Schwalm R., S	chwartz M. A	crylic resins. Han	over: Vincentz	Network, 2011. 3	84 p.
9.	,	,	,	,	,	
	.,					
		//			2020 62, 6.	. 436–446.
10. Reis	ss G. Micellization of	block copolyn	ners // Progress in p	oolymer science.	2003. V. 28, N 7. I	P. 1107–1170.
11.	,		-			

. .: -

. 2009. 303 .