УДК 519.8

doi: 10.53816/23061456 2024 11-12 38

МОДЕЛЬ ОПРЕДЕЛЕНИЯ ВРЕМЕН ПРОЛЕТОВ КОСМИЧЕСКИХ АППАРАТОВ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ, ДВИЖУЩИХСЯ ПО КРУГОВЫМ ОРБИТАМ НАД ЗОНОЙ ЭКСТРЕННОГО ОПОВЕЩЕНИЯ НАСЕЛЕНИЯ

MODEL FOR DETERMINING FLIGHT TIMES OF EARTH REMOTE SENSING SPACECRAFT MOVING IN CIRCULAR ORBITS OVER THE EMERGENCY PUBLIC WARNING AREA

Д-р техн. наук Е.П. Минаков, канд. техн. наук М.А. Александров, А.В. Мищеряков, канд. техн. наук А.М. Зубачев

D.Sc. E.P. Minakov, Ph.D. M.A. Aleksandrov, A.V. Mishcheryakov, Ph.D. A.M. Zubachev

Военно-космическая академия им. А.Ф. Можайского

В статье рассматривается вопрос определения времен пролетов орбитальной группировки космических аппаратов дистанционного зондирования Земли, движущихся по круговым орбитам, над зоной экстренного оповещения населения (территорией, подверженной риску возникновения быстро развивающихся во времени и пространстве опасных природных явлений и техногенных процессов, представляющих непосредственную угрозу жизни и здоровью находящихся на ней людей). В рамках решения задачи разработан алгоритм определения времен пролета орбитальной группировки, выполнены вычислительные эксперименты, получены пессимистические оценки максимального числа пролетов заданной орбитальной группировки космических аппаратов и установлены временные разрывы в наблюдаемости зоны экстренного оповещения. В основе алгоритма и модели лежит графо-аналитический метод исследования движения космических аппаратов с применением основных теорем сферической тригонометрии.

Ключевые слова: зона экстренного оповещения населения, наземный подвижный объект, время пролета орбитальной группировки.

The article considers the issue of determining the flight times of the orbital constellation of Earth remote sensing spacecraft moving in circular orbits over the emergency warning zone of the population (the territory at risk of the occurrence of dangerous natural phenomena and technogenic processes rapidly developing in time and space, posing an immediate threat to the life and health of people on it). As part of solving the problem, an algorithm for determining the flight times of the orbital constellation was developed, computational experiments were performed, pessimistic estimates of the maximum number of flights of a given orbital constellation of spacecraft were obtained, and time gaps in the observability of the emergency warning zone were established. The algorithm and model are based on a graph-analytical method for studying the motion of spacecraft using the basic theorems of spherical trigonometry.

Keywords: emergency public warning area, ground mobile object, orbital group flyby time.

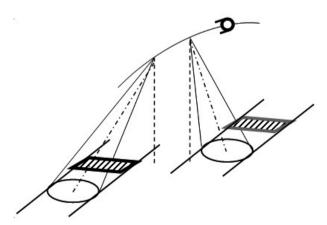
Введение

В Российской Федерации ежегодно происходит большое количество чрезвычайных ситуаций (ЧС) природного и техногенного характера (пожары, наводнения, утечки компонентов топлива) приводящие как к жертвам среди мирного населения так и к ущербу различному имуществу. Для предотвращения жертв и ущерба необходимо своевременное проведение спасательных работ в полном объеме. Успешное проведение спасательных работ достигается:

- своевременной организацией и непрерывным ведением разведки (всех видов и средств),
 с добыванием ею достоверных данных к установленному сроку;
- быстрым вводом формирований в очаги
 ЧС для выполнения задач;
- высоким профессионализмом и психологической стойкостью личного состава;
- знанием и строгим соблюдением личным составом правил и мер безопасности при выполнении работ;
- заблаговременным изучением командирами формирований особенностей выполнения работ на объектах [1].

Спасение людей при чрезвычайных ситуациях — это действия по эвакуации людей из зоны, где имеется вероятность воздействия на них опасных факторов чрезвычайных ситуаций в безопасную зону. Спасательные работы включают:

- разведку (доразведку) маршрутов движения и участков работ;
- локализацию и тушения пожаров на маршрутах движения и участках работ;


- розыск пострадавших и извлечение их из поврежденных и горящих зданий, загазованных, затопленных и задымленных помещений, завалов;
- вывоз (вывод) населения из опасных мест (зон экстренного оповещения) в безопасные районы [1].

Определение данных для маршрутизации и планирования движения наземных подвижных объектов (организованных групп осуществляющих вывоз или вывод населения), должно осуществляться с применением всех видов средств наблюдения в том числе с использованием космических аппаратов (КА) дистанционного зондирования Земли (ДЗЗ), с целью постоянного мониторинга развития ЧС и маршрутов эвакуации. Требуется определение времен пролет над участками путей наземных подвижных объектов (НПО). В связи с тем, что для подавляющего числа КА ДЗЗ орбиты могут считаться круговыми, это позволяет использовать элементы сферической тригонометрии для определения времен их пролетов над участками путей НПО и делает актуальным разработку и апробацию соответствующей модели.

Постановка задачи

Рассмотрим три конструктивно разных типа КА ДЗЗ, применяемых по областям расположенным на поверхности Земли [2, 3, 6]:

1) при требуемой ориентации и переориентации оси визирования аппаратуры, реализуемое на КА, оснащенных оптико-электронной аппаратурой (рис. 1, a);

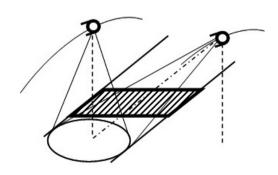


Рис. 1. Применение разнотипных КА ДЗЗ

- 2) при постоянной ориентации оси визирования аппаратуры в Надир, реализуемое на КА с радиолокационной аппаратурой (рис. $1, \delta$);
- 3) при постоянной ориентации оси визирования аппаратуры по углу крена, реализуемое на КА с радиолокационной аппаратурой (рис. $1, \delta$).

Расчет углового размера зоны обнаружения (3O) КА Д33 может быть осуществлен по универсальной формуле (рис. 2) [6, 10]:

$$\phi_{3j} = \pi/2 - (\gamma_j + \beta_j) - \frac{R_3 + H_j}{R_3 \cdot \sin(\gamma_j + \beta_j)},$$

где γ_j — половина угла 3О аппаратуры ДЗЗ γ_j = const;

 β_j — половина угла крена аппаратуры Д33 (β_j = var для КА первого типа; β_j = 0^0 для КА второго типов; $\beta_j \neq 0^0$ = const для КА третьего типа).

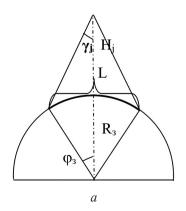
Рис. 2, a соответствует КА первого и второго типов, рис. 2, δ — КА первого и третьего типов.

В том случае, если задается линейный размер «кадра» КА ДЗЗ, соответствующий ширине мгновенной полосы обзора — L, пересчет его в угловой размер при использовании сферической модели поверхности Земли с радиусом R_3 для всех типов КА может быть осуществлен по формуле:

$$\varphi_3 = L / (2 \cdot R_3).$$

Задача определения времен пролетов КА ДЗЗ, движущихся по круговым орбитам, над

участком пути НПО имеет следующую формулировку.


Пусть заданы (рис. 3):

- 1) участок пути НПО, моделируемый ортодромией с исходной точкой (ИТ) $A(\psi_A, \lambda_A, T_A)$ и конечной точкой (КТ) $B(\psi_B, \lambda_B, T_B)$, где ψ_A широта точки A в Гринвичской системе координат, λ_A долгота точки A в Гринвичской системе координат, T_A московское декретное время начала движения НПО из точки A; ψ_B , λ_B , аналогичные параметры для точки B; T_B время окончания движения НПО в точке B [3, 11];
 - 2) группировка КА ДЗЗ:
 - общее количество КА M;
- параметры движения каждого *j*-го КА по круговой орбите $B_j = < H_j, i_j, L_{oj}, t_{oj}>$, где H_j высота полета; i_j наклонение орби-

ты; L_{oj} — долгота восходящего узла орбиты на начальном витке в Гринвичской системе координат; t_{oj} — московское декретное время пролета восходящего узла орбиты на начальном витке:

 $t_{oj} \ge T_{A}$ и $t_{oj} - T_{A} = \min$;

- технические характеристики (ТХ) по каждому j-го КА A_j =< γ_j , β_j >, где γ_j угол полураствора ЗО бортовой аппаратуры ДЗЗ; β_j предельный угол крена оси визирования бортовой аппаратуры ДЗЗ;
- 3) долготы L_{nj} и времена пролетов КА t_{nj} восходящих узлов орбит на интервале времени $[T_{\rm A}, T_{\rm B}]$;
- пусть моделирование движения j-го KA ДЗЗ осуществляется в рамках Кеплеровой теории с гравитационной постоянной Земли $K_3 = 398600,44 \text{ км}^3/\text{c}^2$ для ее сферической поверхности с радиусом $R_3 = 6371 \text{ км}$ при рав-

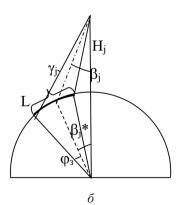


Рис. 2. Зоны обнаружения КА ДЗЗ

номерном вращении Земли вокруг своей оси с угловой скоростью $\omega_3 = 7,2921150 \cdot 10^{-5} \text{ 1/c [4]};$

— по указанным исходным данным при принятых допущениях требуется определить времена пролетов каждого j-го КА ДЗЗ над участком пути НПО в Зените — $t_{nj}^{\text{пЗ}}$ и соответствующие времена и окончания начала обзора $t_{ni}^{\text{пн}}$ и $t_{ni}^{\text{пк}}$.

Алгоритм определения времен пролетов КА ДЗЗ, движущихся по круговым орбитам, над участком пути НПО

Пусть методом наклонных проекций по каждому j-му КА ДЗЗ определены долготы левой и правой границ наклонных проекций на экватор Земли $\lambda_{\Pi_j}^{\rm B}$ и $\lambda_{\Pi_j}^{\rm B}$ для восходящих ветвей и $\lambda_{\Pi_j}^{\rm H}$ и $\lambda_{\Pi_j}^{\rm H}$ для восходящих ветвей траектории [5].

Пусть угловой размер ортодромии пути НПО не превосходит π .

Для определения $t_{nj}^{\text{пЗ}}$, $t_{nj}^{\text{пн}}$ и $t_{nj}^{\text{пк}}$ может быть использован алгоритм, включающий в себя следующие этапы:

1) определение углового размера ортодромии пути НПО — s_{AB} по теореме косинусов для сферических треугольников [9] (рис. 4):

$$\cos s_{AB} = \sin \psi_{A} \cdot \sin \psi_{B} + + \cos \psi_{A} \cdot \cos \psi_{B} \cdot \cos (\lambda_{A} - \lambda_{B});$$

2) вычисление углового размера дуги — продолжения ортодромией пути и дугой экватора Земли — s_1 двойным применением правила Непера [5, 9] (рис. 5, 6)

$$\sin \alpha = \sin \psi_A / \sin s_1;$$

$$\operatorname{ctg} s_1 = (\sin \psi_{\rm B} / \sin \psi_{\rm A} - \cos s_{\rm AB}) / \sin s_{\rm AB};$$

3) расчет угла между ортодромией пути НПО и дугой экватора Земли — α ;

$$\sin\alpha = \sin\psi_A / \sin s_1;$$

4) определение дуги экватора Земли между точкой пересечения продолжения ортодромией пути экватора Земли и меридианом точки А — $\Delta\lambda_1$ по правилу Непера (рис. 3):

$$\begin{cases} \sin\Delta\lambda_1 = \operatorname{ctg}\alpha \cdot \operatorname{tg}\psi_A; \\ \operatorname{tg}\Delta\lambda_1 = \cos\alpha / \operatorname{ctg} s_1; \end{cases}$$

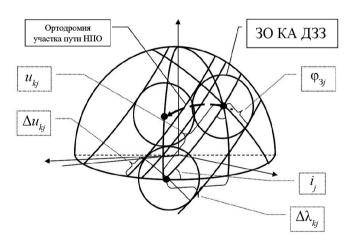
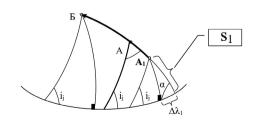



Рис. 3. Параметры покрытия точек А и Б 3О КА ДЗЗ

 $Puc. 4. K определению <math>s_{AB}$, α , s_{I}

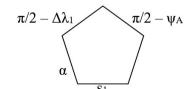
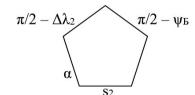



Рис. 5. Пятиугольник Непера для s₁

 $Puc.\ 6.\ Пятиугольник\ Непера\ для\ s$

5) вычисление долготы точкой пересечения продолжения ортодромией пути экватора Земли и меридианом точки А — λ^{α}

$$\lambda^{\alpha} = \lambda_{A} + \Delta \lambda_{1};$$

6) расчет углового размера дуги между точкой пересечения продолжения ортодромией пути экватора Земли и меридианом точки А и долготой пролета *j*-го КА ДЗЗ восходящего узла орбиты на *n*-м витке:

$$\Delta \lambda_{ni}^{\alpha} = \lambda^{\alpha} - L_{ni};$$

7) определение угла между ортодромий участка пути и ортодромией между восходящим узлом орбиты и точкой пересечения ее ортодромии участка пути j-го KA ДЗЗ по теореме косинусов для сферических треугольников [5, 9] — A_1 :

$$\cos A_1 = -\cos i_i \cdot \cos \alpha + \sin i_i \cdot \sin \alpha \cdot \cos \Delta \lambda_{ni}^{\alpha};$$

8) расчет центрального угла отклонения оси визирования для КА первого и третьего типов (рис. 2, a):

$$\beta_i^* = \pi / 2 - \beta_i - \arccos((H_i + R_3) / R_3 \cdot \sin \beta_i);$$

- 9) вычисление углового размера ортодромии между восходящим узлом орбиты и точкой пересечения ее ортодромии участка пути j-го КА ДЗЗ по теореме синусов для сферических треугольников $u_{\text{An}i}$ [5, 8, 9]:
 - а) при ориентации оси визирования в Надир

$$\sin u_{Anj} = \sin \alpha \cdot \sin \Delta \lambda_{nj}^{\alpha} / \sin A_1;$$

б) при ориентации оси визирования под углом β_j для прямого наклонения j-го КА ДЗЗ (рис. 7, a, 8):

$$\sin \Delta \beta_i = \operatorname{ctg} i_i \cdot \operatorname{tg} \beta_i;$$

 при ориентации оси визирования вправо по направлению полета КА ДЗЗ

$$u_{\text{A}ni}^{\Pi\Pi} = u_{\text{A}ni} - \Delta\beta_i;$$

 при ориентации оси визирования влево по направлению полета КА ДЗЗ

$$u_{\text{An}i}^{\text{JIII}} = u_{\text{An}i} + \Delta \beta_i;$$

в) при ориентации оси визирования под углом β_j для обратного наклонения j-го КА ДЗЗ (рис. 7, δ , 9):

$$\sin \Delta \beta_i = -\operatorname{ctg} i_i \cdot \operatorname{tg} \beta_i$$

 при ориентации оси визирования вправо по направлению полета КА ДЗЗ

$$u_{\mathrm{A}nj}^{\mathrm{\Pi O}} = u_{\mathrm{A}nj} + \Delta \beta_{j};$$

 при ориентации оси визирования влево по направлению полета КА ДЗЗ

$$u_{\mathrm{A}nj}^{\mathrm{JIO}} = u_{\mathrm{A}nj} - \Delta \beta_{j};$$

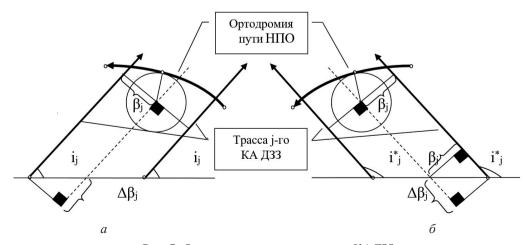
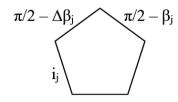



Рис. 7. Ориентация оси визирования КА ДЗЗ

 $Puc.~8.~Пятиугольник Непера для <math>\Delta \beta_{j}$

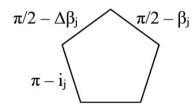


Рис. 9. Пятиугольник Непера для $\Delta \beta_j$ для обратного наклонения j-го KA ДЗЗ

10) расчет периода обращения T_i :

$$T_j = 2 \cdot \pi \cdot \sqrt{\{(R_3 + H_j)^3 / K_3\}};$$

- 11) определение времени движения j-го KA ДЗЗ от восходящего узла орбиты до точки пролета над ортодромией пути НПО в Зените $\Delta t_{\rm Ani}$:
 - а) при ориентации оси визирования в Надир

$$\Delta t_{\mathrm{A}ni} = \left(\mathrm{T}_{i} \cdot u_{\mathrm{A}ni} \right) / \left(2 \cdot \pi \right);$$

- б) при ориентации оси визирования под углом β_i для прямого наклонения j-го КА ДЗЗ:
- при ориентации оси визирования вправо по направлению полета КА ДЗЗ:

$$\Delta t_{\mathrm{A}nj} = \left(\mathrm{T}_{j} \cdot u_{\mathrm{A}nj}^{\mathrm{\Pi}\mathrm{\Pi}} \right) / \left(2 \cdot \pi \right);$$

 при ориентации оси визирования влево по направлению полета КА ДЗЗ:

$$\Delta t_{\mathrm{A}ni} = \left(\mathrm{T}_{i} \cdot u_{\mathrm{A}ni}^{\mathrm{JII}} \right) / \left(2 \cdot \pi \right);$$

- в) при ориентации оси визирования под углом β_i для обратного наклонения j-го КА ДЗЗ:
- при ориентации оси визирования вправо по направлению полета КА ДЗЗ:

$$\Delta t_{\text{A}nj} = \left(T_j \cdot u_{\text{A}nj}^{\text{IIO}} \right) / \left(2 \cdot \pi \right);$$

 при ориентации оси визирования влево по направлению полета КА ДЗЗ:

$$\Delta t_{Ani} = (T_i \cdot u_{Ani}^{IO}) / (2 \cdot \pi);$$

12) вычисление московского декретного времени пролета точки Зенита — $\Delta t_{{\rm A}_{ni}}$:

$$t_{\mathrm{A}ni} = t_{ni} + \Delta t_{\mathrm{A}ni} \; ;$$

13) расчет половины углового размера 3О j-го КА Д33 — $\phi_{3\,i}$:

$$\varphi_{3j} = \pi / 2 - (\gamma_j + \beta_j) - \arccos \frac{R_3 + H_j}{R_3 \cdot \sin(\gamma_j + \beta_j)};$$

14) определение времени движения j-го KA Д33 по дуге соответствующего углового размера — Δt_{oj} :

$$\Delta t_{\omega} = (T_i \cdot \varphi_{3i}) / (2 \cdot \pi);$$

15) вычисление времени начала обзора участка пути НПО j-м КА Д33 — $t_{nj}^{\text{пн}}$:

$$t_{ni}^{\text{\tiny TIH}} = t_{\text{A}ni} - \Delta t_{\text{\tiny O}i}$$
;

16) расчет времени окончания обзора участка пути НПО j-м КА ДЗЗ — $t_{nj}^{\text{пк}}$:

$$t_{nj}^{\text{\tiny IIK}} = t_{\text{A}nj} + \Delta t_{\text{o}j};$$

17) определение продолжительности обзора участка пути НПО j-м КА ДЗЗ — $t_n^{\text{пк}}$:

$$\Delta t_{nj} = 2 \cdot \Delta t_{\varphi j}$$
.

В связи с тем, что скорость полета j-го КА ДЗЗ по круговой орбите — $V_{\rm kp}$ существенно выше максимальной скорости движения НПО по участку пути — $V_{\rm max}^{\rm HIIO}$ ($V_{\rm kp}$ >> $V_{\rm max}^{\rm HIIO}$) [2, 10] уместно положить, что:

- на интервале от начальной точки касания трассой КА ДЗЗ ортодромии до пролета им точки Зенита НПО всегда будет наблюдаем с КА ДЗЗ;
- на интервале от пролета КА ДЗЗ точки Зенита до конечной точки касания трассой КА ДЗЗ НПО не будет наблюдаем с КА ДЗЗ.

Пример определения времен пролетов КА ДЗЗ, движущихся по круговым орбитам, над участком пути НПО

Пусть круговыми считаются орбиты КА ДЗЗ, для которых относительный эксцентриситет — $e_j \le 10^{-2}$ [5]. В соответствии с этим можно выявить группировку, состоящую из 43 КА, оснащенных различной аппаратурой ДЗЗ (табл. 1).

Как видно из данных табл. 1 орбиты всех КА ДЗЗ могут считаться круговыми и, следовательно, может быть эффективно применен метод наклонных проекций [6].

По параметрам движения и ТХ может быть выделено 16 типов таких КА (табл. 1). По каждому из них были рассчитаны средняя высота круговой орбиты и среднее наклонение, определены соответствующая максимальная и минимальная высота (табл. 2).

Пусть продолжительность применения КА ДЗЗ по участку пути НПО составляет одни сутки, то есть $T_{\kappa}-T_{\mu}=86400$ с.

Значения γ_j и β_j = const для всех КА и координаты ИТ и КТ участка пути НПО приведены в табл. 3.

Для решения поставленной задачи в MSExcel разработан специальный программномоделирующий комплекс. С его использованием по каждому типу КА ДЗЗ методом наклонных проекций для значений, соответствующих максимальным высоте и наклонению, были рассчитаны пространственно-временные параметры наклонных проекций: долгота левой границы наклонной проекции (ДЛГ НП), долгота правой границы наклонной проекции (ДПГ НП), угловой размер наклонной проекции (УР НП), время начала существования наклонной проекции (ВНС НП), время окончания существования наклонной проекции (ВОС НП), продолжительность существования наклонной проекции (ПС НП) для восходящих и нисходящих ветвей траекторий этих КА (табл. 4).

Результаты расчетов числа пролетов над участком пути для всех КА ДЗЗ приведены в табл. 5.

Из данных табл. 5 видно, что на рассматриваемом интервале при принятых исходных данных по параметрам движения и ТХ число покрытий участка пути для КА ДЗЗ изменяется от 0 до 2, а общее число пролетов группировки, состоящей из 43 КА, составляет 28 раз. Последнее число позволяет оценить величину — среднее число позволяет оценить величину — сред-

нее время, в течение которого над путем пролетает хотя бы один КА Д33, которое в этом случае составляет величину в 3085,714 с = 51,42857 мин и которое может служить характеристикой пути НПО.

Из данных табл. 5 видно, что максимальное число пролетов одиночного КА ДЗЗ над ортодромией пути при принятых исходных данных может быть равным двум. Это позволяет сформировать пессимистическую оценку максимального числа пролетов, равную в этом случае 86, что, в свою очередь, позволяет оценить осредненное время, в течение которого над путем пролетает хотя бы один КА ДЗЗ из группировки и которое составляет величину в 1004,651 с = 16,74419 мин, что также может служить характеристикой пути НПО.

Таблица 1 Группировка 43 КА, оснащенных различной аппаратурой ДДЗ

	L_{oj}	Высота перигея	Высота апогея	$e_{_j}$	$oldsymbol{i}_j$	T_{j}			
j	град	KM	KM		град	МИН			
				1 тип					
1	12	624	643	1,36E-03	97,9	97,4			
2	4	622	645	1,64E-03	97,9	97,4			
	2 тип								
3	43	501	519	1,31E-03	97,5	94,8			
4	74	491	508	1,24E-03	97,5	94,8			
5	83	495	510	1,09E-03	97,5	94,6			
6	121	500	519	1,38E-03	97,5	94,8			
				3 тип					
7	0	334	347	9,69E-04	96,92	91,34			
				4 тип					
8	0	622	623	7,15E-05	97,9	97,2			
9	0	622	623	7,15E-05	97,9	97,2			
10	0	622	623	7,15E-05	97,9	97,2			
11	0	622	623	7,15E-05	97,9	97,2			
12	0	621	648	1,93E-03	97,9	97,2			
13	0	621	622	7,15E-05	97,8	97,1			
				5 тип					
14	0	800	800	0,00E+00	98,6	100,87			
		6 тип							
15	0	480	480	0,00E+00	97,3	94			

Таблица 1 (продолжение)

Высота апогея Высота перигея i_{i} T_{i} L_{oi} e_{i} град ΚM ΚM 7 тип 122,99 4,01E-04 107,35 16 0 1101 1107 1068 17 1107 2,61E-03 123 107 0 106,7 18 0 1066 1081 1,01E-03 123 19 0 1086 1087 6,71E-05 123 106,7 8 тип 20 0 1047 1057 6,74E-04 106 106,2 21 0 710 729 1,34E-03 98,3 99,1 10 тип 22 683 683 0,00E+0098,1 98,42 0 23 0 669 690 1,49E-03 98,16 98,35 24 0 681 683 1,42E-04 98,1 98 25 0 679 98,1 682 2,13E-04 98,37 26 0 676 698 1,56E-03 98,2 98,5 27 0 679 1,20E-03 98,2 696 98,5 11 тип 28 0 522 540 1,30E-03 97,5 95,25 12 тип 3,70E-03 29 366 416 73,6 92,7 0 30 0 395 419 1,77E-03 74 92,7 13 тип 1,23E-03 31 0 535 552 97,6 95,5 14 тип 32 0 697 699 1,41E-04 98,2 98,7 33 0 678 691 9,21E-04 98,5 98,45 15 тип 34 623 626 2,14E-04 97,9 97,2 0 97,9 35 0 615 617 1,43E-04 97,2 16 тип 538 2,17E-04 36 0 541 97,6 95,4 37 0 550 557 5,06E-04 97 96 38 0 563 573 7,21E-04 96,9 96,02 39 0 468 505 2,70E-03 98,2 94,3 40 0 470 503 2,41E-03 98,19 94,34 41 473 1,68E-03 98,17 94,3 0 496 42 0 448 486 2,78E-03 98,16 94,4 43 0 474 502 2,04E-03 98,16 94,37

Таблица 2

Значения средней высоты круговой орбиты и среднего наклонения и соответствующие им максимальные и минимальные высоты

Тип КА ДЗЗ	Средняя высота	Максим. высота	Миним. высота	Среднее наклон.
0	КМ	КМ	KM	град
1	633,5	633,5	633,5	97,9
2	505,375	510	499,5	97,5
3	340,5	340,5	340,5	96,92
4	624,3333	634,5	621,5	97,9
5	800	800	800	98,6
6	480	480	480	97,3
7	1087,875	1104	1073,5	122,99
8	1052	1052	1052	106
9	719,5	719,5	719,5	98,3
10	683,25	687,5	679,5	98,1
11	531	531	531	97,5
12	399	407	391	73,6
13	543,5	543,5	543,5	97,6
14	691,25	698	684,5	98,2
15	620,25	624,5	616	97,9
16	509,1875	568	467	97,6

Таблица 3 **Координаты ИТ и КТ участка путей НПО**

γ_j	β_{j}	Ψит	$\lambda_{_{\mathrm{UT}}}$	$\psi_{\rm kt}$	$\lambda_{_{ m KT}}$	$T_{_{\mathrm{H}}}$	$T_{_{\mathrm{K}}}$
град	град	град	град	град	град	၁	၁
5	12	47,096	37,5471	47,222	39,72	3000	89400

Таблица 4 Рассчитанные значения пространственно-временных параметров наклонных проекций

	Восходящая ветвь							
Тип КА	ДЛГ НП	ДПГ НП	УР НП	ВНС НП	ВОС НП	ПС НП		
KΑ	град	град	град	С	С	С		
1	47,570552	53,357207	5,7866544	2228,9889	88621,118	86392,129		
2	47,3903	52,47188	5,081584	2249,323	88643,48	86394,15		
3	47,10949	51,22926	4,119767	2272,594	88670,41	86397,82		
4	47,56841	53,36073	5,792322	2249,323	88643,48	86394,15		
5	47,99408	54,74132	6,747244	2228,989	88621,12	86392,13		
6	47,23252	52,14197	4,90945	928,7314	87320,84	86392,11		
7	82,60662	92,63778	10,03117	2249,323	88643,48	86394,15		
8	56,07948	64,53533	8,455848	2095,067	88541	86445,94		
9	47,8319	54,11435	6,282454	2201,889	88616,19	86414,3		
10	47,789012	53,887627	6,0986147	2249,323	88643,475	86394,152		
11	47,34538	52,54553	5,200158	2240,101	88647,16	86407,06		
12	21,61243	26,02067	4,408236	2235,385	88628,97	86393,59		
13	47,42969	52,70201	5,272317	2235,561	88645,04	86409,48		
14	48,10153	54,26573	6,1642	2205,057	88619,21	86414,15		
15	47,58984	53,32549	5,735652	2220,291	88631,83	86411,54		
	i		5 400665	2220 265	00640 14	06410.77		
16	48,04542	53,46609	5,420665	2229,365	88640,14	86410,77		
	48,04542	53,46609		2229,365 щая ветвь	88640,14	86410,77		
тип	48,04542 ДЛГ НП	53,46609 ДПГ НП			ВОС НП	ПС НП		
			Нисходя	щая ветвь				
тип	длг нп	дпг нп	Нисходя УР НП	щая ветвь	ВОС НП	ПС НП		
тип КА	ДЛГ НП град	ДПГ НП град	Нисходя УР НП град	щая ветвь ВНС НП с	вос нп	ПС НП		
тип КА 	ДЛГ НП град 216,11128	ДПГ НП град 221,80407	Нисходя УР НП град 5,6927881	щая ветвь ВНС НП с 859,72771	ВОС НП с 87251,857	ПС НП с 86392,129		
тип КА 1 2	ДЛГ НП град 216,11128 216,6743	ДПГ НП град 221,80407 221,6665	Нисходя УР НП град 5,6927881 4,992212	щая ветвь ВНС НП с 859,72771 914,2376	ВОС НП с 87251,857 87308,39	ПС НП с 86392,129 86394,15		
тип КА 1 2 3	ДЛГ НП град 216,11128 216,6743 217,4792	ДПГ НП град 221,80407 221,6665 221,516	Нисходя УР НП град 5,6927881 4,992212 4,036826	внс нп с 859,72771 914,2376 978,4266	ВОС НП с 87251,857 87308,39 87378,43	ПС НП с 86392,129 86394,15 86400		
тип КА 1 2 3 4	ДЛГ НП град 216,11128 216,6743 217,4792 216,6743	ДПГ НП град 221,80407 221,6665 221,516 221,6665	Нисходя УР НП град 5,6927881 4,992212 4,036826 4,992212	щая ветвь ВНС НП с 859,72771 914,2376 978,4266 914,2376	ВОС НП с 87251,857 87308,39 87378,43 87308,39	ПС НП с 86392,129 86394,15 86400 86394,15		
тип КА 1 2 3 4 5	ДЛГ НП град 216,11128 216,6743 217,4792 216,6743 216,1113	ДПГ НП град 221,80407 221,6665 221,516 221,8041	Нисходя УР НП град 5,6927881 4,992212 4,036826 4,992212 5,692788	щая ветвь BHC НП с 859,72771 914,2376 978,4266 914,2376 859,7277	ВОС НП с 87251,857 87308,39 87378,43 87308,39 87251,86	ПС НП с 86392,129 86394,15 86400 86394,15 86392,13		
тип KA 1 2 3 4 5 6	ДЛГ НП град 216,11128 216,6743 217,4792 216,6743 216,1113 216,9259	ДПГ НП град 221,80407 221,6665 221,516 221,6665 221,8041 221,7481	Нисходя УР НП град 5,6927881 4,992212 4,036826 4,992212 5,692788 4,822198	щая ветвь ВНС НП с 859,72771 914,2376 978,4266 914,2376 859,7277 930,753	ВОС НП с 87251,857 87308,39 87378,43 87308,39 87251,86 87322,84	ПС НП с 86392,129 86394,15 86400 86394,15 86392,13 86392,09		
тип КА 1 2 3 4 5 6 7	ДЛГ НП град 216,11128 216,6743 217,4792 216,6743 216,1113 216,9259 178,2923	ДПГ НП град 221,80407 221,6665 221,516 221,6665 221,8041 221,7481 187,7963	Нисходя УР НП град 5,6927881 4,992212 4,036826 4,992212 5,692788 4,822198 9,504003	щая ветвь BHC НП с 859,72771 914,2376 978,4266 914,2376 859,7277 930,753 952,9372	ВОС НП с 87251,857 87308,39 87378,43 87308,39 87251,86 87322,84 87204,83	ПС НП с 86392,129 86394,15 86400 86394,15 86392,13 86392,09 86251,89		
тип KA 1 2 3 4 5 6 7 8	ДЛГ НП град 216,11128 216,6743 217,4792 216,6743 216,1113 216,9259 178,2923 206,084	ДПГ НП град 221,80407 221,6665 221,516 221,6665 221,7481 187,7963 214,3552	Нисходя УР НП град 5,6927881 4,992212 4,036826 4,992212 5,692788 4,822198 9,504003 8,2712	щая ветвь BHC НП с 859,72771 914,2376 978,4266 914,2376 859,7277 930,753 952,9372 720,0531	ВОС НП с 87251,857 87308,39 87378,43 87308,39 87251,86 87322,84 87204,83 87074,25	ПС НП с 86392,129 86394,15 86400 86394,15 86392,13 86392,09 86251,89 86354,19		
ТИП КА 1 2 3 4 5 6 7 8 9	ДЛГ НП град 216,11128 216,6743 217,4792 216,6743 216,1113 216,9259 178,2923 206,084 215,5809	ДПГ НП град 221,80407 221,6665 221,516 221,6665 221,8041 221,7481 187,7963 214,3552 221,7651	Нисходя УР НП град 5,6927881 4,992212 4,036826 4,992212 5,692788 4,822198 9,504003 8,2712 6,184205	щая ветвь BHC НП с 859,72771 914,2376 978,4266 914,2376 859,7277 930,753 952,9372 720,0531 825,0058	ВОС НП с 87251,857 87308,39 87378,43 87308,39 87251,86 87322,84 87204,83 87074,25 87210,74	ПС НП с 86392,129 86394,15 86400 86394,15 86392,13 86392,09 86251,89 86354,19 86385,73		
тип КА 1 2 3 4 5 6 7 8 9 10	ДЛГ НП град 216,11128 216,6743 217,4792 216,6743 216,1113 216,9259 178,2923 206,084 215,5809 215,72331	ДПГ НП град 221,80407 221,6665 221,516 221,6665 221,8041 221,7481 187,7963 214,3552 221,7651 221,72481	Нисходя УР НП град 5,6927881 4,992212 4,036826 4,992212 5,692788 4,822198 9,504003 8,2712 6,184205 6,0015027	щая ветвь ВНС НП с 859,72771 914,2376 978,4266 914,2376 859,7277 930,753 952,9372 720,0531 825,0058 838,99105	ВОС НП с 87251,857 87308,39 87378,43 87308,39 87251,86 87322,84 87204,83 87074,25 87210,74 87225,627	ПС НП с 86392,129 86394,15 86400 86394,15 86392,13 86392,09 86251,89 86354,19 86385,73 86386,636		
ТИП КА 1 2 3 4 5 6 7 8 9 10 11	ДЛГ НП град 216,11128 216,6743 217,4792 216,6743 216,1113 216,9259 178,2923 206,084 215,5809 215,72331 216,6549	ДПГ НП град 221,80407 221,6665 221,516 221,6665 221,8041 221,7481 187,7963 214,3552 221,7651 221,72481 221,7656	Нисходя УР НП град 5,6927881 4,992212 4,036826 4,992212 5,692788 4,822198 9,504003 8,2712 6,184205 6,0015027 5,110708	щая ветвь BHC НП с 859,72771 914,2376 978,4266 914,2376 859,7277 930,753 952,9372 720,0531 825,0058 838,99105 906,6255	ВОС НП с 87251,857 87308,39 87378,43 87308,39 87251,86 87322,84 87204,83 87074,25 87210,74 87225,627 87297,54	ПС НП с 86392,129 86394,15 86400 86394,15 86392,13 86392,09 86251,89 86354,19 86385,73 86386,636 86390,92		
ТИП КА 1 2 3 4 5 6 7 8 9 10 11 12	ДЛГ НП град 216,11128 216,6743 217,4792 216,6743 216,1113 216,9259 178,2923 206,084 215,5809 215,72331 216,6549 242,7161	ДПГ НП град 221,80407 221,6665 221,516 221,6665 221,8041 221,7481 187,7963 214,3552 221,7651 221,72481 221,7656 247,3244	Нисходя УР НП град 5,6927881 4,992212 4,036826 4,992212 5,692788 4,822198 9,504003 8,2712 6,184205 6,0015027 5,110708 4,608379	щая ветвь BHC НП с 859,72771 914,2376 978,4266 914,2376 859,7277 930,753 952,9372 720,0531 825,0058 838,99105 906,6255 996,9745	ВОС НП с 87251,857 87308,39 87378,43 87308,39 87251,86 87322,84 87204,83 87074,25 87210,74 87225,627 87297,54 87381,63	ПС НП с 86392,129 86394,15 86400 86394,15 86392,13 86392,09 86251,89 86354,19 86385,73 86386,636 86390,92 86384,66		
ТИП КА 1 2 3 4 5 6 7 8 9 10 11 12 13	ДЛГ НП град 216,11128 216,6743 217,4792 216,6743 216,1113 216,9259 178,2923 206,084 215,5809 215,72331 216,6549 242,7161 216,5313	ДПГ НП град 221,80407 221,6665 221,516 221,6665 221,8041 221,7481 187,7963 214,3552 221,7651 221,72481 221,7656 247,3244 221,7131	Нисходя УР НП град 5,6927881 4,992212 4,036826 4,992212 5,692788 4,822198 9,504003 8,2712 6,184205 6,0015027 5,110708 4,608379 5,181815	щая ветвь BHC НП с 859,72771 914,2376 978,4266 914,2376 859,7277 930,753 952,9372 720,0531 825,0058 838,99105 906,6255 996,9745 901,3559	ВОС НП с 87251,857 87308,39 87378,43 87308,39 87251,86 87322,84 87204,83 87074,25 87210,74 87225,627 87297,54 87381,63 87291,9	ПС НП с 86392,129 86394,15 86400 86394,15 86392,13 86392,09 86251,89 86354,19 86385,73 86386,636 86390,92 86384,66 86390,55		

нио учистком путеи										
Тип	1			2			3	4		
j	1	2	3	4	5	6	7	8	9	
N_{j}	0	1	0	0	1	0	1	0	2	
Тип	4				5	6	7			
j	10	11	12	13	14	15	16	17	18	
N_{j}	1	0	1	0	0	1	2	2	1	
Тип	7	8	9	10						
j	19	20	21	22	23	24	25	26	27	
λ .7	_									
N_{j}	2	1	1	1	0	2	0	0	2	
$\frac{N_j}{\text{Тип}}$	11		1	1 13	-	2	0	0	2 16	
				_	-		34			
Тип	11]	12	13	1	4		15	16	

Таблииа 5 Результаты расчетов числа пролетов всех КА ДЗЗ над участком путей

Заключение

41

2

42

1

43

N=43

28

40

0

38

0

37

39

0

Полученные оценки указывают на то, что в случае применения принятой группировки КА ДЗЗ с соответствующими параметрами движения и TX, на заданном интервале времени имеют место разрывы в наблюдаемости с их использованием пути НПО и, следовательно, существует принципиальная необходимость доразведки с помощью иных способов и средств с целью постоянного контроля состояния (наличия) маршрутов вывоза (выхода) населения из зон экстренного оповещения населения.

Список источников

- 1. Гражданская оборона; под общ. ред. В.А. Пучкова; МЧС России. М.: ФГБУ ВНИИ ГОЧС (ФЦ), 2016. 377 с.
- 2. Аверкиев Н.Ф., Власов Р.П., Богачев С.А. и др. Баллистические основы проектирования ракет-носителей и спутниковых систем: учебник. СПб.: ВКА им. А.Ф. Можайского, 2017. 302 с.
- 3. Советский энциклопедический словарь; гл. ред. А.М. Прохоров. М.: Сов. энциклопедия, 1988. 1600 c.

- 4. Инженерный справочник по космической технике. М.: Военное издательство МО СССР, 1969. 696 с.
- 5. Минаков Е.П., Александров М.А., Мищеряков А.В., Мищеряков С.В. Алгоритм определения параметров наклонных проекций точек на поверхности Земли для круговых орбит космических аппаратов // Труды МАИ. 2024. № 135. С. 1–34.
- 6. Баринов К.Н., Бурдаев М.Н., Мамон П.А. Динамика и принципы построения орбитальных систем космических аппаратов. М.: Машиностроение, 1975. 232 с.
- 7. Минаков Е.П., Мусиенко С.А., Шафигуллин И.Ш. Сборник основных терминов, понятий и определений по вопросам оценивания эффективности и моделирования применения специальных организационно-технических систем: учеб. пособие. СПб.: ВКА им. А.Ф. Можайского, 2012. 184 c.
- 8. Минаков Е.П., Александров М.А., Мищеряков А.В. Метод определения характеристик пролета орбитальной группировки космических аппаратов дистанционного зондирования Земли над пространственно-временными областями // Труды ВКА им. А.Ф. Можайского, 2023. Вып. № 690. C. 121–134.
- 9. Мамон П.А., Половников В.И. Приложение теорем сферической тригонометрии к решению практических задач: учеб. пособие. Вып. 4. ВИКИ, 1973. 27 с.
- 10. Основы теории полета космических аппаратов; под ред. Г.С. Нариманова и М.К. Тихонравова. М.: Машиностроение, 1972. 608 с.
- 11. Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся ВТУЗов. Л.: ОГИЗ, 1946. 556 с.
- 12. Чернов А.А., Чернявский Г.М. Орбиты спутников дистанционного зондирования Земли. Лекции и упражнения. М.: Радио и связь, 2005. 200 c.
- 13. Глущенко А.А., Хохлов В.П. Алгоритм идентификации изменений и уточнения параметров движения техногенного объекта в околоземном космическом пространстве на основе радиолокационных измерений // Известия Тульского государственного университета. Технические науки. 2021. Вып. 12. С. 164-170.
- 14. Минаков Е.П., Александров М.А., Мищеряков А.В. Модель расчета вероятности потенциально результативных пролетов космичес-

кого аппарата над заданным районом // Известия Тульского государственного университета. Технические науки. 2023. № 11. С. 152–157.

15. Маштаков Я.В., Ткачев С.С. Построение углового движения спутника ДЗЗ при отслеживании маршрутов на поверхности Земли // Препринты ИПМ им. М.В. Келдыша. 2014. № 20. 31 с. URL: http://library.keldysh.ru/preprint. asp?id=2014-20 (дата обращения: 21.04.2024).

References

- 1. Civil defense / Under the general editorship of V.A. Puchkov; the Ministry of Emergency Situations of Russia. M.: Federal State Budgetary Institution of the Russian Academy of Sciences (FC), 2016. 377 p.
- 2. Averkiev N.F., Vlasov R.P., Bogachev S.A. and others. Ballistic fundamentals of the design of launch vehicles and satellite systems: Textbook. St. Petersburg: A.F. Mozhaisky VKA, 2017. 302 p.
- 3. The Soviet Encyclopedic Dictionary / Chief editor A.M. Prokhorov. M.: Soviet Encyclopedia, 1988. 1600 p.
- 4. Engineering handbook of space technology. Military Publishing House of the USSR Ministry of Defense, 1969. 696 p.
- 5. Minakov E.P., Alexandrov M.A., Mishcheryakov A.V., Mishcheryakov S.V. Algorithm for determining the parameters of inclined projections of points on the Earth's surface for circular orbits of spacecraft // Proceedings of MAI. 2024. No 135. Pp. 1–34.
- 6. Barinov K.N., Burdaev M.N., Mamon P.A. Dynamics and the principles of building orbital systems of spacecraft. M.: Mashinostroenie, 1975. 232 p.
- 7. Minakov E.P., Musienko S.A., Shafigullin I.Sh. Collection of basic terms, concepts and definitions on the issues of evaluating the effective-

- ness and modeling the use of special organizational and technical systems: A study guide. St. Petersburg: A.F. Mozhaisky VKA, 2012. 184 p.
- 8. Minakov E.P., Alexandrov M.A., Mishcheryakov A.V. A method for determining the characteristics of the flight of an orbital grouping of Earth remote sensing spacecraft over spatiotemporal regions // Proceedings of the A.F. Mozhaisky VKA, 2023. Issue No. 690. Pp. 121–134.
- 9. Mamon P.A., Polovnikov V.I. Application of spherical trigonometry theorems to solving practical problems: a textbook. Issue 4. WIKI, 1973. 27 p.
- 10. Fundamentals of the theory of spacecraft flight. Edited by G.S. Narimanov and M.K. Tikhonravov. M.: Mashinostroenie, 1972. 608 p.
- 11. Bronstein I.N., Semendyaev K.A. Handbook of mathematics for engineers and students of higher education institutions. L.: OGIZ, 1946. 556 p.
- 12. Chernov A.A., Chernyavskiy G.M. Orbits of Earth remote sensing satellites. Lectures and exercises. Moscow: Radio and Communication, 2005. 200 p.
- 13. Glushchenko A.A., Khokhlov V.P. Algorithm of the changes identification and refinement of the man-made object motion parameters in the near-Earth space on the basis of the radar measurements (in Russian) // Izvestiya Tula State University. Technical sciences. 2021. Vyp. 12. Pp. 164–170.
- 14. Minakov E.P., Alexandrov M.A., Mischeriakov A.V. Model for calculating the probability of potentially effective spacecraft overflights over a given area // Izvestiya Tula State University. Technical Sciences. 2023. № 11. Pp. 152–157.
- 15. Mashtakov Y.V., Tkachev S.S. Construction of angular motion of a remote sensing satellite during tracking of routes on the Earth's surface // Preprints of M.V. Keldysh IPM. 2014. № 20. 31 p. URL:http://library.keldysh.ru/preprint.asp?id=2014-20 (date of reference: 21.04.2024).