УДК 519.8

doi: 10.53816/23061456_2025_9-10_89

МЕТОДИЧЕСКИЙ ПОДХОД К ОБРАБОТКЕ ДАННЫХ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМНОЙ ПОВЕРХНОСТИ В СИСТЕМАХ МОНИТОРИНГА ПОТЕНЦИАЛЬНО ОПАСНЫХ ПРОЦЕССОВ ПРИРОЛНОГО И ТЕХНОГЕННОГО ХАРАКТЕРА

METHODICAL APPROACH TO DATA PROCESSING REMOTE SENSING OF EARTH SURFACE IN POTENTIALLY HAZARDOUS MONITORING SYSTEMS NATURAL AND MAN-MADE PROCESSES

Канд. техн. наук Р.П. Власов, канд. воен. наук С.Г. Спиридонов, канд. техн. наук М.А. Александров, А.И. Карин

Ph.D. R.P. Vlasov, Ph.D. S.G. Spiridonov, Ph.D. M.A. Aleksandrov, A.I. Karin

Военно-космическая академия им. А.Ф. Можайского

В статье представлен методический подход к планированию комплексной обработки данных дистанционного зондирования Земли в системах мониторинга потенциально опасных природных и техногенных процессов. Рост числа объектов мониторинга требует рационального распределения ограниченных ресурсов, обеспечивающего своевременное и полное решение задач. Предлагаемый подход учитывает текущую загруженность ресурсов и их возможности, основываясь на анализе текущего состояния системы. Разработан метод, позволяющий формировать рабочие планы обработки с учетом критериев полноты и приоритетности задач. Представлен интегральный показатель эффективности функционирования системы.

Ключевые слова: дистанционное зондирование земной поверхности, системы и сети массового обслуживания, ресурсы комплексной обработки, комплексная обработка, базы данных, управление сложными техническими системами, единый технологический цикл обработки данных.

The article presents a methodological approach to planning the complex processing of remote sensing data of the Earth's surface in systems for monitoring potentially hazardous natural and man-made processes. The growing number of monitoring objects requires rational allocation of limited resources to ensure timely and complete task execution. The proposed approach takes into account the current workload and capabilities of the resources, based on an analysis of the system's current state. A method has been developed to generate operational processing plans considering task priority and completeness criteria. An integral indicator of the monitoring system's efficiency is introduced.

Keywords: remote sensing of remote sensing of the earth's surface, systems and networks of mass service, resources of complex processing, complex processing, databases, management of complex technical systems, a single technological data processing cycle.

Введение

При рассмотрении методов и средств, обеспечивающих решение задач мониторинга потенциально опасных процессов и явлений природного и техногенного характера, стоит отдельно выделить методы и средства дистанционного зондирования земной поверхности, осуществляемого как с использованием космических, так и авиационных летательных аппаратов. Эти методы и средства предоставляют видовую информацию по изучаемым объектам и процессам, которая в совокупности составляет до 85 % от общего объема данных [1, 2].

Мониторинг потенциально опасных процессов осуществляется на основе единого технологического цикла (ЕТЦ) комплексной обработки данных дистанционного зондирования земной поверхности, который реализуется с применением автоматизированных рабочих мест (АРМ), тематических баз и банков данных, специализированных информационно-вычислительных систем, в которых накапливаются исходные данные и результаты их обработки, а также автоматизированных систем (АС), осуществляющих отдельные сложные этапы специальной обработки в рамках ЕТЦ, которые в рамках данной статьи будем для краткости называть ресурсами комплексной обработки или просто ресурсами [3, 4].

В качестве рассматриваемых потенциально опасных процессов и явлений необходимо выделить: лесные пожары, ледовые явления на реках, наводнения, аварии с выбросом химических, радиоактивных или биологических веществ при их производстве, переработке или хранении, террористические акты и т.п.

Ключевые особенности, которые присущи указанным потенциально опасным процессам и которые оказывают значительное влияние на реализацию единого технологического цикла комплексной обработки данных дистанционного зондирования земной поверхности в системах их мониторинга, рассмотрены в работе [5]:

- возрастание различных типов событий на объектах мониторинга, а также увеличение их числа;
- взаимосвязанность событий в рамках тех или иных потенциально опасных процессов;

- обязательное присутствие пространственно-временной метки (события происходят в заданное время и в заданной географической точке);
- возможность сравнения отдельных событий, а также потенциально опасных процессов по степени важности путем введения и задания им значения коэффициента относительной значимости [6].

Данные особенности обуславливают ужесточение требований к эффективности реализации единого технологического цикла комплексной обработки данных дистанционного зондирования земной поверхности и входят в противоречие с ресурсными возможностями систем мониторинга потенциально опасных процессов (СМ ПОПр), то есть определяют их ресурсную ограниченность [2, 5].

Методический подход планирования комплексной обработки данных дистанционного зондирования земной поверхности

В рамках данной статьи предполагается, что комплексная обработка данных дистанционного зондирования земной поверхности по отдельным явлениям и событиям, происходящим в рамках рассматриваемых потенциально опасных процессов, осуществляется путем решения расчетно-информационных задач (РИЗ), которые поступают на вход системы мониторинга. При этом каждый ресурс позволяет выполнять отдельную операцию в рамках единого технологического цикла [7]. В этом смысле планирование комплексной обработки данных стоит рассматривать в контексте задачи рационального распределения ресурсов по решаемым задачам в системе мониторинга потенциально опасных процессов, которая может быть классифицирована в рамках предметной области системы массового обслуживания.

С учетом результатов, полученных в работах [2, 6], а также в соответствии с подходом, предложенным в работах [7, 8], функционирование СМ ПОПр представляет собой целенаправленный процесс, комплексный показатель эффективности которого R(t) на временном интервале $\Delta t = [0,t]$ может быть представлен следующим образом:

$$R(t) = \frac{\sum_{n=1}^{N(t)} \xi_n K_{f,n} K_{a,n}}{\sum_{n=1}^{N(t)} \xi_n},$$

где N(t) — количество задач в очереди на решение к моменту времени t;

 ξ_n — коэффициент относительной значимости задачи, $\xi_n \in [0,1]$, при этом его исходное значение задается заранее потребителем результатов решения задачи;

 $K_{f,n}$ — специальный параметр каждой решенной задачи, обозначающий уровень завершенности решения задачи (полнота результатов решения задачи) к моменту времени t, то есть $K_{f,n} \in [0,1]$;

 $K_{a,n}$ — специальный параметр каждой решенной задачи, обозначающий уровень актуальности результатов ее решения к заданному моменту времени t, то есть $K_{a,n} \in [0,1]$.

Рациональное распределение ресурсов комплексной обработки данных по решаемым задачам основано на принципах и критериях, характеристика и параметры которых рассмотрены в работах [3, 5] и в данной статье повторяться не будут. В частности, в качестве таких критериев необходимо выделить:

- критерий достаточности полноты результатов решения задач (обеспечивает соблюдение принципа приоритета оперативности);
- критерий приоритета задач с максимальной значимостью (обеспечивает соблюдение принципа приоритета результативности);
- критерий максимума производительности (позволяет учесть оба принципа сразу).

Методический подход, общая схема которого показана на рис. 1, в процессе формирования

рабочего плана решения РИЗ позволяет учесть условия ресурсной ограниченности системы мониторинга потенциально опасных процессов путем учета степени вклада привлекаемых ресурсов, обеспечивая при этом требуемый уровень полноты результатов решения задач.

Методический подход предполагает выполнение следующих этапов:

- формирование исходных данных и настраиваемых параметров управления;
- формирование базового плана решения РИЗ:
- оценивание доступности ресурсов обработки для незамедлительного начала выполнения базового плана решения РИЗ;
- при невозможности незамедлительного начала выполнения базового плана ресурсами системы обработки — формирование рабочего плана решения РИЗ по критерию достаточности полноты результатов решения задачи.

Суть метода заключается в следующем.

На его вход поступает очередная расчетно-информационная задача. Далее, на основе имеющейся базы данных типов задач, определяется тип поступившей задачи и формируется базовый (то есть «идеальный») план решения, при котором в решении задачи задействуются все необходимые ресурсы в требуемой последовательности [9, 10].

Методический подход предполагает, что для каждого типа РИЗ ведется и доступна информационно-аналитическая (экспертная) система учета базовых планов решения РИЗ разных типов. Далее осуществляется оптимизация плана решения расчетно-информационной задачи по критерию достаточности полноты ее результатов, после чего задача поступает на обработку к ресурсам, входящим в рабочий план.

Рис. 1. Общая схема методического подхода планирования комплексной обработки данных дистанционного зондирования земной поверхности

На первом этапе проведения исследований осуществляется получение исходных данных в виде очередной расчетно-информационной задачи и параметров управления функционированием системы мониторинга потенциально опасных процессов.

Исходными данными являются:

 $R_{\mbox{\tiny цели}}$ — требования к результативности функционирования СМ ПОПр;

- характеристики поступающих расчетно-информационных задач (потока задач);
- данные по состоянию и возможностям ресурсов комплексной обработки данных.

В качестве настраиваемых параметров управления функционированием СМ ПОПр используются:

 $X_{\min} = \{x^{(m)}\}, x^{(m)} \in [0,1]$ — минимальное значение требуемого вклада ресурса в решение задачи m-го типа, при котором он исключается из плана применения;

 $\Delta_{\max} = \left\{ \delta_{\max}^{(m)} \right\}$ — максимальное допустимое время ожидания доступности ресурса при решении задачи m-го типа, при превышении которого он исключается из плана применения.

На втором этапе исследований, схема которого показана на рис. 2, осуществляется формирование базового плана решения очередной рас-

четно-информационной задачи ресурсами комплексной обработки данных и оценка возможности незамедлительного начала его выполнения.

На первом и втором шагах этапа на основе анализа типа поступившей задачи $z_i^{(m)}$ осуществляется поиск подходящего базового плана ее решения в информационно-аналитической (экспертной) системе учета базовых планов решения расчетно-информационных задач разных типов.

На третьем шаге этапа осуществляется оценивание текущей доступности ресурсов, попавших в базовый план (то есть к моменту времени $t' = t_i$):

$$\Omega' = \left\{ \omega'_{n,k} \right\}, \Theta'(\mathbf{t}') = \left\{ \theta'_{n,k} \left(\mathbf{t}' \right) \right\}.$$

В соответствии с моделью функционирования СМ ПОПр [1], текущая доступность ресурсов определяется вектором $\Theta(t) = \{\theta_{n,k}(t)\}.$

Таким образом, формируется вектор $\Theta'(t') = \{\theta'_{n,k}(t')\}$, который включает значения доступности только тех ресурсов, которые вошли на первом и втором шагах текущего этапа метода в базовый план.

Если все вошедшие в базовый план ресурсы доступны,

$$\forall \theta'_{n,k}(t') \in \Theta'(t') \Rightarrow \theta'_{n,k}(t') > 0$$
,

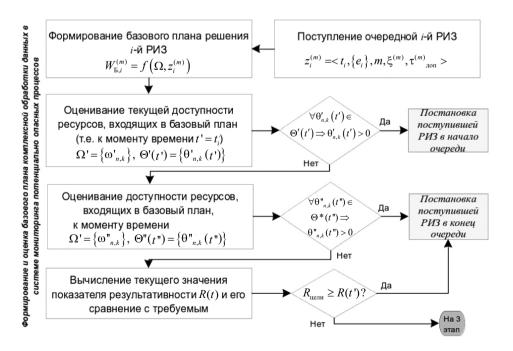


Рис. 2. Схема второго этапа методического подхода планирования комплексной обработки данных дистанционного зондирования земной поверхности

то данный базовый план решения расчетно-информационной задачи используется в качестве рабочего. При этом осуществляется постановка поступившей задачи в начало очереди (то есть фактически она сразу же уходит на исполнение). Работа метода при этом завершается.

В противном случае, на четвертом шаге этапа осуществляется оценивание доступности ресурсов, попавших в базовый план, к моменту времени $t'' = t_i + \tau_{\text{поп}}^{(m)}$,

$$\Omega' = \left\{ \omega_{n,k}'' \right\}, \Theta''(t'') = \left\{ \theta_{n,k}''(t'') \right\}.$$

Если все вошедшие в базовый план ресурсы доступны,

$$\forall \theta_{n,k}''(t'') \in \Theta''(t'') \Rightarrow \theta_{n,k}''(t'') > 0$$
,

то данный базовый план решения расчетно-информационной задачи используется в качестве рабочего.

При этом осуществляется постановка поступившей задачи в конец очереди. Работа метода при этом завершается.

В противном случае осуществляется переход на пятый шаг этапа, где происходит вычисление текущего значения показателя результативности функционирования СМ ПОПр и его сравнение с целевым значением $R_{\rm пели}$.

Если это значение меньше целевого, то данный базовый план решения РИЗ используется в качестве рабочего. При этом осуществляется постановка задачи в конец очереди. Работа метода при этом завершается.

В случае, если текущее значение показателя результативности превышает целевое значение, то осуществляется переход к третьему этапу работы метода.

На третьем этапе исследований, схема которого показана на рис. 3, осуществляется оптимизация по критерию достаточности полноты результатов решения расчетно-информационных задач, а именно, определение загруженности требуемых ресурсов и времени ожидания их доступности. При этом, если время ожидания превышает установленный порог, а вклад ресурса в получение интегрального результата решения задачи не превышает минимального требуемого, то такой ресурс исключается из плана.

На первом шаге данного этапа в качестве исходного плана решения задачи $z_i^{(m)}$ задается базовый план $W_{\rm E}^{(m)}$. Фактически в дальнейшем из этого плана будут при необходимости и возможности исключаться некоторые ресурсы.

На втором шаге этапа для поступившей задачи осуществляется формирование параметра Δ_i , который определяет минимально требуемое значение совокупного вклада ресурсов в общий

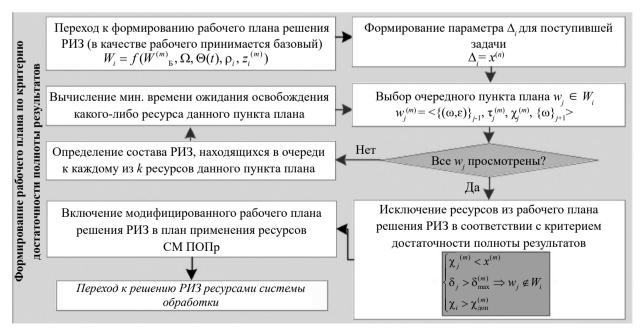


Рис. 3. Схема третьего этапа методического подхода планирования комплексной обработки данных дистанционного зондирования земной поверхности

результат решения задачи. В качестве значения этого параметра используется значение $x^{(m)}$.

На третьем шаге этапа осуществляется переход к циклу, в котором осуществляется перебор всех пунктов w_j , входящих в рабочий план. При этом для каждого пункта плана осуществляется:

- определение типа ресурса, задействованного для выполнения его элементарной операции;
- определение состава РИЗ, находящихся в очереди к каждому из k ресурсов данного пункта плана;
- вычисление минимального времени ожидания освобождения какого-либо ресурса, тип которого используется в данном пункте плана.

После того как все пункты рабочего плана просмотрены и для каждого из них вычислено минимальное время ожидания доступности требуемого ресурса, осуществляется выход из цикла и переход к следующему шагу, на котором осуществляется исключение из плана решения поступившей задачи тех ресурсов, вклад которых в интегральный результат меньше требуемого, время ожидания их доступности больше максимально допустимого и при этом совокупный вклад оставшихся в плане ресурсов больше минимально допустимого. То есть осуществляется применение критерия достаточности полноты результатов.

$$\begin{cases} \chi_{j}^{(m)} < \chi^{(m)} \\ \delta_{j} > \delta_{\max}^{(m)} \implies w_{j} \notin W_{i}. \\ \chi_{i} > \chi_{\text{доп}}^{(m)} \end{cases}$$

На завершающем шаге этапа осуществляется включение модифицированного плана решения поступившей задачи в план применения ресурсов и постановка задачи $z_i^{(m)}$ в конец очереди.

Результатом исследований с использованием методического подхода является оптимизированный по критерию обеспечения достаточности полноты результатов рабочий план применения ограниченных ресурсов системы мониторинга потенциально опасных процессов для решения поступившей РИЗ, что позволяет исключить из плана решения очередной задачи те ресурсы, которые вносят незначительный вклад в интегральный результат ее решения, и тем самым повысить общую эффективность функционирования СМ ПОПр.

Заключение

Предлагаемый методический подход может быть:

- положен в основу технологии реализации системы принятия решений по управлению процессами комплексной обработки данных дистанционного зондирования земной поверхности в условиях ресурсных ограничений;
- использован при проектировании других автоматизированных систем, которые позволяют обеспечить многоканальную многостадийную обработку потока задач в очередях, для которых существенным является обоснованное принятие верных управленческих решений в рамках жестких ресурсных ограничений.

Список источников

- 1. Макриденко Л.А., Волков С.Н., Ходненко В.П. Концептуальные вопросы создания и применения малых космических аппаратов // Вопросы электромеханики. 2010. Т. 114. С. 15–26.
- 2. Карин А.И., Карин С.А., Октябрьский В.В. Модели адаптивного управления функционированием систем комплексной обработки геопространственных данных при решении задач мониторинга территориально-распределенных объектов // Труды Военно-космической академии. 2019. Вып. 671. С. 314—325.
- 3. Карин С.А., Бережной И.В. Подходы к созданию перспективной системы комплексного мониторинга разнородных информационных ресурсов, имеющих геопространственную компоненту // Естественные и технические науки. 2016. № 6. С. 138–140.
- 4. Карин С.А., Бережной И.В. Технология обработки данных в сетецентрических системах сбора, обработки и анализа разнородной геопространственной информации // Естественные и технические науки. 2016. № 6. С. 141–143.
- 5. Алферов А.В., Карин А.И., Карин С.А. и др. Метод адаптивного определения приоритетов информационно-расчетных задач в системах мониторинга потенциально опасных процессов природного и техногенного характера в условиях ресурсной ограниченности // Труды Военно-космической академии. 2021. Вып. 676. С. 95–104.
- 6. Карин С.А. Операционно-временная модель функционирования систем комплексной

- обработки геопространственных данных в условиях дефицита их ресурсов // Информационноуправляющие системы. 2017. № 2. С. 51–57.
- 7. Спиридонов С.Г. К вопросу определения рационального варианта системы вооружения войск // Военная мысль. 2016. № 12. С. 6–12.
- 8. Петухов Г.Б., Якунин В.И. Методологические основы внешнего проектирования целенаправленных процессов и целеустремленных систем. М.: АСТ, 2006. 504 с.
- 9. Winston W.L., Goldberg J.B. Operations Research: Applications and Algorithms. 4th ed. Belmont: Thomson Brooks/Cole, 2004. 1414 p.
- 10. Hillier F.S., Lieberman G.J. Introduction to Operations Research. 10th ed. New York: McGraw-Hill, 2015. 1120 p.

References

- 1. Makridenko L.A., Volkov S.N., Khodnenko V.P. Conceptual issues of creation and applications of small spacecraft // Electromechanics issues. 2010. Vol. 114. Pp. 15–26.
- 2. Karin A.I., Karin S.A., Oktyabrsky V.V. Models of adaptive management of the functioning of integrated geospatial data processing systems when solving problems of monitoring geographically distributed objects // Proceedings of the Military Space Academy. 2019. Issue 671. Pp. 314–325.
- 3. Karin S.A., Berezhnoy I.V. Approaches to creating a promising system for comprehensive monitoring of heterogeneous information resources

- with a geospatial component // Natural and technical sciences. 2016. No 6. Pp. 138–140.
- 4. Karin S.A., Berezhnoy I.V. Data processing technology in network-centric systems for collecting, processing and analyzing heterogeneous geospatial information // Natural and technical sciences. 2016. No 6. Pp. 141–143.
- 5. Alferov A.V., Karin A.I., Karin S.A. et al. Method of adaptive prioritization of information and calculation tasks in systems for monitoring potentially dangerous processes of a natural and technogenic nature in conditions of resource limitation // Proceedings of the Military Space Academy. 2021. Issue 676. Pp. 95–104.
- 6. Karin S.A. Operational and time model of functioning of systems for integrated processing of geospatial data in conditions of shortage of their resources // Information management systems. 2017. No 2. Pp. 51–57.
- 7. Spiridonov S.G. On the issue of determining the rational version of the weapons system of the troops // Military thought. 2016. No 12. Pp. 6–12.
- 8. Petukhov G.B., Yakunin V.I. Methodological foundations of external design of purposeful processes and purposeful systems. M.: AST, 2006. 504 p.
- 9. Winston W.L., Goldberg J.B. Operations Research: Applications and Algorithms. 4th ed. Belmont: Thomson Brooks/Cole, 2004. 1414 p.
- 10. Hillier F.S., Lieberman G.J. Introduction to Operations Research. 10th ed. New York: McGraw-Hill, 2015. 1120 p.