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Abstract. Introduction. This study provides an in-depth analysis of the forest Remote Sensing
Ecological Index (RSEI) time series data in the Hexi Corridor area from 2000 to 2023, employing non-
linear curve fitting to uncover the changing trends and characteristics of the region's forest ecosystems.
Research Aim. Harnessing the characteristics of nonlinear curves, specific transformative periods and
points within the series are identified, facilitating refined predictions for forest ecological trends. By
combining the generalized additive model (GAM) to extract the different impact relationships between
altitude and RSEI in different forest ecological regions, and the IncMSE analysis of the random forest
model, the differences between altitude and forest type on forest ecosystems in different forest ecologi-
cal regions were found Influence. Result. Forests at higher altitudes exhibit greater ecological stability
and elevated RSEI values, suggesting improved environmental quality. Natural forests, characterized by
their rich biodiversity and complex structures, consistently display the highest RSEI values across vari-
ous ecological zones, highlighting their pivotal role in maintaining ecological balance and delivering
ecosystem services. In contrast, artificial forests, primarily situated at lower altitudes and often near
human activities, show linear and stable temporal patterns with lower RSEI values. Conclusion. Signifi-
cant temporal fluctuations of RSEI were identified, particularly in the years 2002, 2010, and 2017, with
a noticeable trend of decreasing fluctuation periods over time, likely reflecting the impact
of recent forest conservation and restoration efforts. This study uniquely combines curve analysis with
ecological indices to provide a comprehensive framework for understanding and predicting changes in
forest ecosystems, offering crucial insights for future conservation and management strategies, especial-
ly in the Hexi Corridor.
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Introduction

Forest ecosystems, as one of the most
important biological communities on Earth,
play an irreplaceable role in maintaining bio-
diversity, regulating the climate, and the car-
bon cycle [1]. With the intensification
of global changes, forest ecosystems are fac-
ing unprecedented threats, such as forest deg-
radation [2], forest fire disturbances [3],
and loss of biodiversity [4], all of which ur-
gently require in-depth research and effective
monitoring by the scientific community.
The Hexi Corridor is located in northwest
China and is a typical ecologically fragile arid
and semi-arid region [5]. Due to its special
geographical and climatic conditions, it is cru-
cial to the forest ecosystem of the Hexi Corri-
dor. Remote sensing technology, especially
the acquisition and analysis of multi-temporal
remote sensing data, offers a unique and ef-
fective means to monitor forest cover changes
on a global and regional scale. By analysing
the time series of remote sensing data, track-
ing, and assessing the long-term trends in for-
est ecosystems [6], it is crucial for understand-
ing the characteristics of changes in forest
ecosystems and formulating forest manage-
ment strategies.

The advancement of remote sensing
technology has facilitated the development
and application of various remote sensing
ecological indices, such as the Normalized
Difference Vegetation Index (NDVI) [7],
the Enhanced Vegetation Index (EVI) [8],
and the Remote Sensing Ecological Index
(RSEI) used in this study [9]. These indices
provide powerful tools for assessing
the health status and ecological functions
of forests and vegetation. They offer a quan-
titative means to evaluate and understand
the dynamic changes in forest ecosystems
by integrating the photosynthetic capacity
and biomass level of vegetation.

As time series analysis methods become
widely applied in ecological research, time
series fitting techniques have become crucial
for understanding forest and vegetation dy-
namics. Linear regression methods used

for time series trend analysis can reveal inter-
annual changes in forest cover [10], while in-
corporating seasonal changes through meth-
ods like LandTrendr [11] and BFAST [12]
can identify short-term disturbances within
these trends. Nonlinear fitting methods using
polynomial fits [13] offer a more accurate de-
scription and analysis of nonlinear changes
in vegetation time series data, revealing deep-
er mechanisms of vegetation changes and
the impact of environmental factors [14].

Despite the extensive application of linear
and polynomial regression methods in remote
sensing time series analysis of forests, these
approaches often show limitations when deal-
ing with the complexity of ecological data.
Linear models may not adequately capture
the complex nonlinear relationships between
environmental factors and forest ecosystems
[15], and although polynomial models provide
some capacity for nonlinear processing, they
can be overly simplistic when dealing with
high-dimensional interactions [16]. In con-
trast, Generalized Additive Models (GAM)
[17] not only allow each predictor to maintain
different nonlinear relationships [18] but also
adapt flexibly to data structures through
smoothing functions, making them particular-
ly suitable for analyzing complex dynamics
in environmental and ecological variables
within time series [19]. Furthermore, GAMs
can effectively test the impact of each smooth-
ing term to ensure the model is both flexible
and avoids overfitting [18]. Meanwhile,
the Random Forest model, by constructing
multiple decision trees and outputting variable
importance scores through Incremental Mean
Square Error (IncMSE) analysis [20], pro-
vides a powerful tool for identifying and veri-
fying which environmental factors significant-
ly impact forest health [21]. Compared to
a single decision tree model, Random Forests
enhance prediction accuracy and generaliza-
tion capabilities due to their ensemble learn-
ing nature [22].

The aim of this research was to explore
the temporal changes in the forest ecosys-
tems of the Hexi Corridor from 2000 to 2023,
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using remote sensing data time series analy-
sis with RSEI as a key indicator of forest
ecological health. Curve fitting divides
the RSEI time series transformation curve
into three linear models and six curve mod-
els, and identifies the time points of abrupt
changes in the forest ecosystem based
on the curve models. Combining elevation
and forest type, Generalized Additive Models
are used to study the relationship between
elevation and different forest ecological re-
gions, while Random Forest models employ
Incremental Mean Square Error (IncMSE)
analysis to assess the impact of elevation
and forest type on forest RSEI across differ-
ent ecological regions.

Research area

The Hexi Corridor is located in the north-
west part of Gansu Province, China, with geo-
graphic coordinates ranging from 101°08'E
to 103°50'E and 36°45'N to 39°27'N. This re-
gion covers an area of approximately
78,000 km? and serves as an important passage
connecting the Chinese mainland with its
northwest frontier, as well as being one
of the core sections of the ancient Silk Road

[23]. Situated at the southern edge of the Qi-
lian Mountain range, the terrain of the Hexi
Corridor gradually descends from south
to north, creating a unique topography
and ecosystem (Fig. 1). Climatically, the Hexi
Corridor features a typical temperate continen-
tal arid climate, characterized by dryness,
scarce precipitation, and abundant sunshine
[24]. The annual average temperature is about
7,7 °C, while the annual precipitation varies
depending on the location, generally showing
a decreasing trend from east to west and from
south to north, with annual average precipita-
tion ranging from 50 to 400 millimeters.
A significant seasonal precipitation pattern
1s observed, with about 90 % of the rainfall
concentrated between May and October.
In terms of forest resources, the forest cover-
age rate in the Hexi Corridor is relatively low,
mainly concentrated in the mountainous areas
and oasis regions near rivers. The Qilian
Mountains are the main forest distribution area
in this region, where the forests are primarily
composed of Qinghai spruce (Picea crassifo-
lia), Sea-buckthormn (Hippophae rhamnoides),
forming a unique alpine forest ecosystem [25].
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Data and methods

In this study, we examine the changes
in forest ecosystems within the Hexi Corridor
area by utilizing the RSEI [26] time series
from 2000 to 2023. The remote sensing image-
ry employed in our analysis is sourced from
the Google Earth Engine (GEE) platform,
which offers Landsat imagery provided by
the United States Geological Survey (USGS).
The imagery covers Landsat 5 from 2000
to 2011, Landsat 7 for 2012, and Landsat 8
from 2013 to 2023. The choice of the June
to October period for image acquisition
is based on the alignment with the peak
growth of forest vegetation, ensuring the best
possible representation of vegetation health.
Over 24 years, a total of 5064 images were
acquired, averaging 211 images per year.

Prior to analysis, extensive preprocessing
of the imagery was performed on the GEE
platform [27]. This involved the removal
of cloud cover and the masking of water bod-
ies, snow, glaciers, and barren lands to ensure
the dataset's continuity and reliability.
The RSEI for forested areas was computed
annually using the Landsat images, and linear
interpolation was applied to fill in any missing
values within the RSEI time series on a per-
pixel basis. The RSEI calculation [28] incor-
porates the following components:
RSEI=f(Greenneess, Wetness, Dryness, Heat). (1)

Greenness: Represented by the Normalised
Difference Vegetation Index (NDVI); Wet-
ness: Derived from the moisture component
in the tasseled cap transformation; Dryness:
Gauged by the Normalised Difference Im-

/

pervious Surface Index (NDISI), which in-
corporates both the Index-based Built-up In-
dex (IBI) and the soil index (SI); Heat: Indi-
cated by the land surface temperature (LST).

The analysis posits that external events
impacting forests during the study period can
trigger rapid ecological shifts, manifested
as either improvements or deteriorations,
which then stabilize after initial fluctuations, as
argued by Falk et al. [29]. This research en-
hances traditional linear trend analysis by in-
corporating three additional time-series curve
fitting models based on the S-curve archetype:
exponential, logarithmic, and logistic. These
models characterize states of initial stability
followed by change (exponential), change fol-
lowed by stability (logarithmic), and a return to
stability after change (logistic), thereby captur-
ing key ecological transition points with nu-
ance. Fig. 2 presents the comprehensive steps
of the research flowchart.

Furthermore, the analysis categorizes
the overall direction of RSEI changes — in-
creasing or decreasing — based on the slope
of the time series, with a threshold of 0,05 set
to define a linearly stable state. This methodol-
ogy delineates nine distinct time-series fitting
models: linear decreasing, linear increasing,
linear stable, exponential increasing, exponen-
tial decreasing, logarithmic decreasing, loga-
rithmic increasing, logistic decreasing, and lo-
gistic increasing (Fig. 3). Through this sophisti-
cated modeling approach, the study meticulous-
ly simulates the temporal dynamics of forest
ecosystems, providing a refined understanding
of ecological trends over the observed period.
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In this study, we utilized two sophisticated
approaches, the Generalized Additive Models
(GAM) [30] and Random Forest (RF) [31],
to investigate the dynamics of the RSEI
and its interaction with environmental factors.
The application of these two models aims
to analyze and predict changes in RSEI
from different perspectives and identify key
environmental factors driving these changes.

Generalized Additive Models (GAM)
are flexible statistical models with considera-
ble degrees of freedom, suitable for studying
the nonlinear regression effects of data.
They represent a form of non-parametric
smoothing regression within the framework

68

of multivariate regression models. In GAM,
it is assumed that the dependent variable Y
follows a normal distribution, and the relation-
ship between the independent variables X
and the dependent variable Y's conditional mean
can be succinctly expressed as follows [32]:

E(Y | X) =a+ fi(X1) + £H(X2) + 2)

+... 1+ (X)) + &,

here, E(Y | X) denotes the expected value of Y
given the set of independent variables X,
a is the intercept, and fi, 2, ..., f, are smooth
functions of the independent variables
X1, X2, ..., Xp, respectively, and € is an error term.

Firstly, the introduction of GAM lever-
ages its flexibility as a regression model
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to explore the nonlinear relationships be-
tween the RSEI and altitude. GAM models
the relationship between response variables
and explanatory variables through nonlinear
smoothing functions, effectively capturing
and revealing the complex nonlinear dynam-
ics between variables. Within the framework
of this study, to explore and elucidate
the complex nonlinear relationships between
the Forest RSEI and environmental factors,
GAM was chosen as a key analytical tool.
Evolving from GLM, GAM introduces non-
linear smoothing functions [33], enabling
the model to flexibly capture and reveal
the dynamic nonlinear relationships between
response and explanatory variables.

In order to further analyze and predict
changes in the Forest RSEI and its response
to environmental factors, we employed
the RF model, particularly utilizing Incre-
mental Mean Squared Error (IncMSE) [34]
analysis to evaluate the importance of key
environmental factors influencing RSEI
changes. IncMSE analysis is a method to as-
sess the importance of feature variables
in Random Forest models, based on the core
assumption that if a feature significantly con-
tributes to the model's predictive ability, ran-
domly altering the values of that feature
in the dataset will significantly increase
the model's prediction error [35]. Therefore,
IncMSE analysis evaluates the impact
of randomly shuffling each environmental
factor's values on the model's predictive per-
formance, thereby determining the most in-
fluential environmental factors on RSEI.

IncMSE analysis begins by calculating
the model's prediction error (Mean Squared
Error) on the original data, then performs
the following steps for each feature: selects
a feature and randomly shuffles its values
across all samples in the dataset, keeping
the values of other features constant.
The model's prediction error is recalculated
on this new dataset with the shuffled feature
values [36]. The prediction error after shuffling
the feature values is compared to the original
prediction error, and the error increment,
IncMSE, is calculated. A higher IncMSE
[20] for a feature indicates a greater contribu-

tion to the model's predictive ability,
thus considered more important.

Through the combined use of GAM
and RF models, this study comprehensively
explores the relationship between RSEI
and environmental factors, deepening the un-
derstanding of changes in forest ecosystems.
We classified linearly stable time series
as the RSEI stable zone, logarithmic increas-
ing and logistic increasing as the high RSEI
stable zone, logarithmic decreasing and lo-
gistic decreasing as the low RSEI stable zone,
linearly decreasing as the RSEI decreasing
zone, and exponential increasing and linearly
increasing as the RSEI increasing zone.
We employed the GAM to explore the impact
of altitude on annual mean RSEI, aiming
to reveal the complex relationship between
altitude and RSEI within different ecological
zones. By introducing altitude as a key ex-
planatory variable and the annual mean RSEI
as the response variable, we constructed mod-
els for five ecological zones. The model uses
a Gaussian link function to accommodate
the continuous nature of RSEI and fully cap-
ture its nonlinear relationship with altitude.
GAM reveals the nonlinear relationships
and key turning points between environmental
factors and RSEI, while the RF model
and IncMSE analysis pinpoint which envi-
ronmental factors are most crucial to RSEI
changes, providing a scientific basis for forest
ecology protection and management. This in-
tegrated methodology not only enhances in-
sights into the forest ecosystem's response
to environmental changes but also offers prac-
tical tools for devising effective conservation
strategies and management measures.

Results

In this study, we first extracted forest
areas in the Hexi Corridor region and classi-
fied them as natural forests, shrublands,
mixed forests, and plantations according
to their forest types. To assess the ecological
health and dynamics of these forests over time,
we computed the annual RSEI for each forest
area from the year 2000 through to 2023.
Each year's PCI value was greater than 80,
ensuring the reliability of the annual RSEI
values. Our findings, as depicted in Figure 3,
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indicate that the average annual RSEI values
were initially high, exhibiting relatively sta-
ble fluctuations with a discernible upward
trend. Notably, the RSEI reached its peak
in the year 2019, suggesting a period of en-
hanced ecological conditions within the for-
est ecosystems of the Hexi Corridor.

Based on the pre-established time-series
assessment model employed in the experi-
ment, the RSEI time series for each pixel was
analyzed, resulting in eight distinct temporal
patterns: exponential growth, linear decline,
linear growth, linear stability, logarithmic
decline, logarithmic growth, logistic decline,
and logistic growth (see Fig. 4). Contrary
to anticipated outcomes, no instances of ex-
ponential decrease were identified, suggest-
ing that there are no areas within the study
region where the forest RSEI has transitioned
from a stable state to a continuous downward
trajectory. The observed patterns of growth,
in particular, exhibited a more nuanced clas-
sification than a simple linear trend, with ar-
eas of both growth, and decline showing
a variety of complex temporal dynamics.

For different time-series curves under
forest types: exponential increasing, linear
decreasing, linear increasing, linear stable,
logarithmic decreasing, logarithmic increas-
ing, logistic decreasing, and logistic increas-

Average RSEI

= Average RSEI

ing. These further classified into 4 forest
types — natural forest, shrubland, mixed forest,
and plantation forest. For each category,
we compute the area, average RSEI, and mean
elevation in Table. Except for planted forests,
the majority of forests were in a linearly stable
state, with areas of RSEI growth exceeding
those of RSEI decline. Combined with Fig. 5
we can see the average annual RSEI values
for different curves showed significant differ-
ences in altitude, and there were also distinct
differences between the average annual RSEI
and altitude among different forest types un-
der the same curve.
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Fig. 4. Average annual RSEI statistics
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Timing curves according to the forest types
KpuBbie B COOTBETCTBHHU C THUIIOM Jieca

Timing Curve Forest type Area, km? RSEI Elevation (meter)
Natural Forest 269 0,6399 3039
Exponential Increasing Shrubland 571 0,6195 3160
Mixed Forest 350 0,5898 2940
Plantation Forest 13 0,4052 1809
Natural Forest 0,21 0,3695 1567
Linear Decreasing Shrubland 0,62 0,3653 2709
Mixed Forest 10 0,4103 1487
Plantation Forest 0,62 0,4203 1537
Natural Forest 13 0,6221 3093
Linear Increasing Shrubland 50 0,5141 2498
Mixed Forest 44 0,5759 2894
Plantation Forest 1,24 0,3784 1540
Natural Forest 1556 0,6187 3005
Linear Stable Shrubland 3257 0,5523 2983
Mixed Forest 1570 0,5198 2631
Plantation Forest 100 0,3882 1721
Natural Forest 6 0,6297 3060
Logarithmic Decreasing Shrubland 9 0.6211 3228
Mixed Forest 16 0,5935 3051
Natural Forest 37 0,6221 2963
Logarithmic Increasing Shrubland 31 0,5921 3159
Mixed Forest 40 0,5551 2788
Plantation Forest 0,41 0,5393 3040
Natural Forest 23 0,5863 3036
Logistic Decreasing Shrubland 30 0,4969 2998
Mixed Forest 12 0,4448 2253
Plantation Forest 1 04114 1581
Natural Forest 124 0,6267 3115
Logistic Increasing Shrubland 146 0,5467 3141
Mixed Forest 68 0,445 2238
Plantation Forest 4 0,3865 1468

The relationship between tree species
and altitude demonstrated the adaptability
of different forest types to geographical loca-
tions and environmental conditions. Natural
forests and shrublands tend to grow in higher
altitude areas, which are usually more pris-
tine and less affected by human activities,
while mixed forests have a broader altitude
distribution, showing adaptability under dif-

ferent environmental conditions from low
to high altitudes. Planted forests are primarily
concentrated in lower altitude areas, pos-
sibly related to their planting purposes
and the need for management convenience.
These relationships between tree species
and altitude reflect the complex interactions
of forest ecosystems under different envi-
ronmental pressures and the impact of human
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activities on forest distribution and forest
type selection. Natural forests and shrublands
typically display higher environmental quali-
ty indicators, while planted forests have low-
er indicators, maintaining these patterns
across different temporal changes. In some
cases, mixed forests also show higher RSEI
values, especially in linear increasing.

According to Fig. 4, the Exponential in-
creasing category demonstrated the highest
average RSEI values at 0,613, with an aver-
age forest altitude of 3,054 meters. Other
time-series curve types also showed similar
trends, indicating a strong correlation be-
tween high RSEI values and high altitudes.
Forests in high-altitude areas are generally
less disturbed by human activities, likely
harbouring more pristine and intact ecosys-
tems, which contributes to maintaining high
environmental quality.

Forests in the linear decreasing trend area
had the lowest average RSEI value of 0,408,
with an average altitude of 1,559 meters,
which is relatively low. Lower altitude areas
are more susceptible to human activities such
as agriculture, urban expansion, and industrial
activities, which may lead to biodiversity loss

0.2

Density

0.1

2000 2005 2010
Turning Year

and ecosystem service degradation, thus low-
ering the quality of the forest ecological
environment. Based on the characteristics
of the curves, we first extracted the significant
change points in forest RSEI time series with-
in the study period for three types of temporal
curves: exponential increasing, logarithmic
increasing, and logarithmic decreasing (Fig. 6).
Density indicates the frequency of RSEI time
series change points in that year. We found
that the time of significant change points
is concentrated between 2015 and 2020, espe-
cially the exponential increase is particularly
significant. The time points for exponential
increasing indicate the years when forest
RSEI transitions from stable to rapidly in-
creasing. Logarithmic increasing shows forest
RSETI transitioning from rapid increase to sta-
bility. Logarithmic decreasing represents for-
est RSEI shifting from rapid decline to stabil-
ity. As illustrated in Fig. 6, the frequency
of these time points shows three peaks
in the years 2002, 2010, and in 2017, with
the highest frequency occurring in 2017, es-
pecially for exponential increasing, where
the quantity of this curve type significantly
surpasses the other two.

exponential_Increasing
logarithmic_Decreasing
logarithmic_Increasing

Fig. 6. Density statistics chart of exponential increasing, logarithmic increasing, and logarithmic decreasing
change points occurrence years
Puc. 6. I'paghux cmamucmuku nIOMHOCMU MOYEK USMEHEHUS NPU IKCHOHEHYUATIbHOM POCHie,
JO2aPUPMUUECKOM POCIE U J02APUPMULECKOM YObIBAHUU HO 200AM BOSHUKHOGEHUS
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Similarly, the change points for logistic
curves, which depict periods of fluctuation
from stability back to stability, were extracted.
As shown in Fig. 7, fluctuating periods
are present throughout the entire study period,
but the specific times of fluctuations and their
durations vary. The start times are primarily
clustered around 2001 and 2014, while
the end times concentrate around 2004
and 2018. In 2013, the most common duration
of fluctuation was 4 years, with fluctuation
periods mainly ranging from 1 to 5 years.

Although all experienced a process
from stability to fluctuation and back to stabil-
ity, the time of fluctuation varies. Based

0.15

010

Density

0.05

on the concentration of start and end times
at the extremes of the study period and
the fact that most changes occurred within
five years, we can hypothesise that the fluctu-
ation intervals in the entire study period
are mainly concentrated in two phases:
2000-2005 and 2013-2023. The analysis
of all change periods (Fig. 8) indicates that
the early phase of the study experienced long-
er durations of fluctuation, while the later
phase had shorter durations, with a peak
in 2013. This suggests a trend of shortening
fluctuation periods over time, indicating
that the forest RSEI in these areas can recover
to stability more quickly in later periods.
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Fig 7. Fluctuation periods of RSEI Logistic curve
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Fig. 8. (1) Logic curve fluctuation start time and end time statistics; (2) Logic curve fluctuation duration statistics
Puc. 8. (1) Cmamucmuka epemeru Ha4ana u OKOHYAHUSL NEPUOO08 KONeOAHULL IOSUCIUYECKOU KPUBOLL
(2) cmamucmuka OnumenbHOCIU KONeOaHull 102UCMUYecKoll Kpusou
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Using the GAM analysis, response curves
for RSEI with altitude across different eco-
logical zones were calculated (Fig. 9).
The analysis revealed a significant nonlinear
relationship between altitude and annual mean
RSEL This indicates that, in the majority of
ecological zones, as altitude increases, forest
RSEI correspondingly rises, reflecting better
ecological quality and environmental stability.
Notably, aside from the unique pattern exhib-
ited by the ecological decreasing zone, the
other four ecological zones show a tendency
for RSEI changes to stabilize when altitude
exceeds 3,000 meters, demonstrating adapta-
bility to high-altitude environments.

Further analysis identified a clear turning
point at around 2,000 meters in altitude across
these four ecological zones, indicating this
altitude as a key threshold affecting forest
ecological stability. Meanwhile, at altitudes
around 4,000 meters, the trend of RSEI im-

(1)

0
o 04
0.2
1000 2000 3000 4000
altitude
(2)
0.6
0
o 04
0.2
1000 2000 3000 4000
altitude
(4)
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provement slows down or even slightly de-
clines in the high RSEI stable zone and low
RSEI stable zone compared to the stable
zone, suggesting that ecosystem stability
might be challenged under extreme high-
altitude conditions.

In-depth analysis using the RF model
across different ecological zones identified
altitude as a universally important predictor,
particularly in the RSEI stable and RSEI in-
creasing zones, as evidenced by the Incre-
mental Mean Square Error (IncMSE) values
of altitude changes (Fig. 10). Especially in the
RSEI stable and RSEI increasing zones, high-
er IncMSE values underscore the significant
role of altitude variations on forest RSEI in-
dicating that forest ecological quality in these
areas may improve with increasing altitude.
Concurrently, there was a notable decrease in
the IncMSE value of altitude within the RSEI
decreasing zone.
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Fig. 9. Altitude’s influence curve in different zone: (1) RSEI Stable Zone; (2) High RSEI Stable Zone;
(3) Low RSEI Stable Zone, (4) RSEI Decreasing Zone; (5) RSEI Increasing Zone
Puc. 9. Kpusas eruanus évicomul Had yposHem Mopsi 8 pasHuix 30nax: (1) 3ona cmabunvnozo unoexca RSEI;
(2) 30na cmabuabho evicokoeo unoexca RSEI; (3) 3ona cmabunvho nuskoeo unoexca RSEI
(4) 30na crudicenus undexca RSEIL; (5) 3ona pocma unoexca RSEI
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Fig. 10. A comparison of how altitude affects RSEI
Puc. 10. Cpasnenue snusanus gpicomul Ha0 yposHem mopsa Ha unoexc RSEI

In the RSEI stable zone, the IncMSE
value for altitude is the highest, suggesting
a close connection between the terrain fea-
tures and climatic conditions of these areas
and altitude changes. The environmental gra-
dient caused by altitude changes may be
a significant factor affecting forest ecosys-
tems. In both the high RSEI stable zone
and the low RSEI stable zone, the impact
of forest types is similar, but altitude has
a more substantial influence on the high
RSEI stability zone. The characteristic
of the RSEI decreasing zone is that IncMSE
values of all the factors are relatively low,
indicating that ecological degradation might
not be solely caused by altitude or forest
types but could result from the combined ef-
fects of multiple complex factors such
as human activities, climate, and fires.
In the RSEI increasing zone, both altitude
and forest types have relatively high IncMSE
values, suggesting that these natural factors
play a positive role in improving or restoring
forest ecology, potentially related to ecologi-
cal restoration measures or natural regenera-
tion processes.

Discussion

Compared to traditional linear trend stud-
ies of time series, research employing curve
trends allows for a more detailed and com-
prehensive analysis of temporal change pat-
terns [37]. These studies not only identify
the trends of change but also extract specific
points and periods of transformation within
the time series through the characteristics
of the curves, thereby facilitating more con-
venient predictions for the forest ecosystem.
By utilizing various curve types, the temporal
changes of RSEI can be more accurately
modeled, allowing for the identification
of specific change points and periods.
In the Hexi Corridor region, some studies
have already utilized time-series RSEI analy-
sis for small-scale areas [13, 14]. Building
on this foundation, our study further supple-
ments the analysis of RSEI changes under dif-
ferent forest types. By employing the GAM
and the Increment of IncMSE methods,
we not only validate existing research conclu-
sions but also explore the complex nonlinear
relationships and variable importance between
RSE]I, forest types, and altitude in this region.
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Natural forests typically have high bio-
diversity and complex ecosystem structures,
contributing to ecological balance and offer-
ing a wealth of ecosystem services [38].
These factors may lead to higher RSEI values
in natural forest areas, primarily located
at higher altitudes with minimal human im-
pact, reflecting better environmental quality
and ecological stability. The self-recovery
ability and adaptability of natural forests
to environmental changes also help maintain
their RSEI values. Shrublands usually play
a supportive and transitional role within eco-
systems, providing habitats and protecting
the ground surface, thereby reducing erosion
[39]. The RSEI values of shrublands vary
by location, showing significant differences
at different altitudes, generally ranking just
below natural forests. This depends on their
role in specific ecosystems and surrounding
environmental conditions. Mixed forests
are distributed at altitudes lower than natural
forests and shrublands but higher than artifi-
cial forests. The complex structure of mixed
forests offers a variety of ecological niches,
encompassing all types of temporal changes.
Their RSEI values are lower than those
of natural forests and shrublands but higher
than those of artificial forests. Artificial for-
ests typically exhibit a linearly stable tem-
poral pattern, often lacking the diversity
and complexity of natural forests [40], with
relatively lower RSEI values. Located
at lower altitudes, often near human activity
areas, artificial forests maintain a low stable
RSEI under human intervention.

The differences in the distribution
of various forest types may reflect the differ-
ent species' response capabilities to environ-
mental changes and their distribution charac-
teristics under various geographical and eco-
logical conditions [41]. The widespread dis-
tribution of natural forests and shrublands
demonstrates their strong adaptability to en-
vironmental changes, while the characteris-
tics of artificial forests conform to their limi-
tations under artificially intervening envi-
ronmental conditions. Mixed forests combine
the features of both natural forests, shrub-
lands, and artificial forests.
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There is a certain correlation between
high RSEI values and high altitudes, aligning
with the analysis conclusions of the General-
ized Additive Model for five regions.
This indicates that as altitude increases,
its impact on RSEI also grows. High-altitude
forests, being less disturbed by human activi-
ties, may have higher environmental quality.
Conversely, lower RSEI values often occur
in lower-altitude areas, likely due to more
frequent human activities such as agriculture,
urban expansion, and industrial activities
[42]. Therefore, altitude may be an important
factor affecting forest environmental quality,
with high-altitude forests possibly having
higher RSEI values due to their relative isola-
tion and ecosystem integrity. These findings
highlight the characteristics of forests
in the Hexi Corridor region, emphasizing
the importance of protecting high-altitude
forests for maintaining biodiversity and eco-
system services, while also pointing out
the challenges of forest protection and man-
agement in low-altitude areas.

The study identified fluctuations
in the region's forests in 2002, 2010, and par-
ticularly in 2017. Periods of rapid ecological
fluctuation occurred between 2000-2005
and 2013-2023. Furthermore, a trend
of shortened fluctuation periods over time
was observed, likely related to forest protec-
tion and restoration projects implemented
in recent years. These measures have pro-
moted the stability and recovery of the forest
ecosystem. Future research could further ana-
lyze the causes of ecological changes in for-
ests based on these specific time points.

The extraction results from the logistic
function's band intervals indicate a trend
of gradually shorter durations of fluctuation
over the years, indicating that the forest eco-
system in the region might be developing
in a better direction, able to return to a stable
state more quickly. This could be attributed
to forest engineering projects implemented
since 2000 in the high-altitude areas
of the Qilian Mountains, such as the "Three-
North Shelterbelt Project (Phases IV and V)"
and the "Natural Forest Protection Project,"
among others. The focused periods of fluctua-
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tion in 2000-2005 and 2013-2023 suggest
further investigation into the causes of fluctu-
ation during these periods, aiming at more
targeted protection of the forest ecosystem
in the region.

Conclusions

This study analyzes the RSEI time-series
data of forest areas in the Hexi Corridor
region from 2000 to 2023, employing various
curve-fitting techniques to more accurately
analyze the changing trends of the forest eco-
system. Compared to traditional linear trend
studies, the application of curve trends allows
for a more detailed and comprehensive ex-
amination of the changes within the time se-
ries. Not only do they reveal the trends
of change, but they also extract specific
points and periods of transformation through
the characteristics of the curves, facilitating
more convenient predictions for the forest
ecosystem.

The study reveals that different temporal
fitting curves delineate five characteristic re-
gions and analyze the impact of altitude
and forest type on forest RSEI within these
regions. A significant correlation between
forest RSEI values, altitude, and forest type
has been found, with RSEI values of differ-
ent forest types exhibiting unique temporal
characteristics and changing trends. The for-

est ecosystem in the Hexi Corridor region
remains stable overall, with altitude being
an important environmental factor signifi-
cantly affecting forest RSEI values. Forests
in high-altitude areas typically exhibit higher
RSEI values and better ecological stability
due to less human disturbance. Natural for-
ests possess higher RSEI values and stability
compared to other forest types.

These findings are significant for guid-
ing forest conservation and management
strategies in the Hexi Corridor and broader
regions, especially in terms of protecting
high-altitude forests and restoring forests
in low-altitude areas. By utilizing the unique
mathematical properties of curves, changes
and periods undetectable by traditional linear
trends are identified, thus providing a more
complete analysis of the changes in the forest
ecosystem.

Future research could further analyze the
causes of ecological changes at these specific
time points to better guide practical protec-
tion and management measures. Continued
exploration of the effectiveness of forest con-
servation and restoration projects, and as-
sessment of the response and adaptation
strategies of different forest types to envi-
ronmental changes, will better inform practi-
cal conservation and management actions.
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AnHOTammA. Beeoenue. B uccnenoBaHun mpoBEeAEH TIYOOKHIA aHAIM3 JaHHBIX BPEMCHHBIX
PAIIOB PKOJOTUYECKOTO MHJCKCA IUCTaHIIMOHHOTO 30HAnpoBanus (aHr1. Remote Sensing Ecological
Index, RSEI) mecoB na teppuropun kopumopa Xocu (Iambcyckuit xopumop, KHP)
¢ 2000 mo 2023 rr. ¢ KCHOJIb30BAaHHEM HEIMHEWHON aNNpOKCHUMAIMK KPUBBIX ISl BBISIBICHUS
TCHICHIUI W3MCHCHHS M XapaKTePHCTHK JIECHBIX JKOCHUCTEM peruoHa. [lens uccredogauus —
OCYIICCTBUTh OICHKY M IPOTHO3WPOBAHUE SKOJOTMYCCKUX TCHICHIIMHA COCTOSHHUS JICCOB TP
WCTIONIb30BAaHNH BPEMEHHBIX pSAAOB CIYTHHKOBBIX JAHHBIX W HEIWHEWHBIX 3aBUCHMOCTEH.
Heob6xoammMo mpoaHanm3upoBaTh B3aUMOCBSA3b MEXKIY BBICOTOW HAJ YPOBHEM MOpS M THIIOM JIECOB
HCCIIEIYEMOTO PernoHa, a TakkKe BIMSHHE 3THX MApaMeTPOB HA HKOJOTWYECKOE COCTOSHHE JECOB
Ha OCHOBE OOBemUHEHHs 0000meEHHON ammutuBHOW Momenm (amri. Generalized Additive Model,
GAM) ¢ anamm3oM IncMSE mopmenm ciydaitroro jeca (anri. Random Forest, RF). Pesyromamut
YKa3bIBAIOT Ha 3HAYUTEIHHYIO KOppETAInio Mex 1y 3HadeHnssMu RSEI sreca n BbICOTO# Hajl ypoBHEM
Mopst. Jleca Ha GOJIBIIMX BBICOTaX NEMOHCTPUPYIOT JIYUYIIYEO SKOJIOTUIECKYIO CTaOMIBHOCTh U O0Jice
Beicokue 3HaueHUsT RSEI, 4To cBUmETEIbCTBYET O OOJiee BRICOKOM Ka4eCTBE OKPY)KAIOIICH CPEIIbl.
EctecTBeHHBIC Jieca, XapaKTepU3YIOMIAECs OOTaThIM OHOpa3HOOOpa3UeM M CIIOKHOW CTPYKTYpOH,
HEM3MCHHO TIOKA3bIBAIOT caMble BhICOKUE 3HaucHUs RSEI B pa3miuuHBIX 9KOJIOTHYECKUAX 30HAX, YTO
MOAYEPKUBACT WX KITIOYCBYIO POJIb B TOAICPIKAHMH SKOJOTHYSCKOTO OallaHCca M TPEIOCTABICHUM
9KOCHUCTEMHBIX YCIyT. B TO ke BpeMs HMCKYCCTBEHHEIC JieCa, PACIIOJIOKCHHBIC MPECUMYIIECCTBEHHO
Ha 0oJiee HU3KUX BBICOTaX M 9acTO BOJM3H JEATEIFHOCTH YEJIOBEKa, XapaKTePU3YIOTCS TMHEHHBIMH
M CTaOWIBHBIMH BPEMEHHBIMH 3aKOHOMEPHOCTSAMH C Ooyiee HM3KMMH 3HadeHHsMH uHaekca RSEIL
3axnouenue. BrIsBICHBI 3HaUUTENbHBIE BpeMeHHbIe kKonebanus uaaekca RSEI, ocobernno B 2002,
2010 u 2017 1r., C 3aMeTHOW TEHICHIMEH K YMEHBIICHHIO IMEPHOIOB KOJeOAHUN C TeUCHHEM
BPEMEHH, YTO, BEPOSTHO, OTpakKaeT BIMSHHWE NPEANPHUHATHIX B IIOCICAHES BPEMS YCHIMI
MO COXpPaHEHHWI0O W BoccTaHoBiIeHHMI0 JecoB B KHP. Hacrosmiee wuccrienoBaHue OpUTHHAIBHO
COYETACT aHANWM3 HEIMHEHHBIX MOJEJCH C HCIOJIb30BAHUEM JKOJOTHYCCKUX HHICKCOB C IICJBIO
00eCIIeUnTh KOMIUICKCHYEO OCHOBY JUISi TOHUMAHUS W TPOTHO3HPOBAHUS M3MCHEHUH B JICCHBIX
JKOCHUCTEMaX W TMPEIOCTABUTh BAXKHCUIIYIO AHAJIWTHUYCCKYI0 HHGMOPMAIMIO I BBIPAOOTKU
OyayIIUX CTpaTernii COXPAaHCHUS U YIIPABJICHHS, IPEXKIIC BCETO B paiioHe Kopuaopa X3cH.

KuroueBble cioBa: yecHas skocuctema; RSEI; 0600ménnas amguruBHas moneib (GAM);
CiIyJaiHbIi Jtec; aHamm3 IncMSE; BpeMeHHON aHam3; KOpUA0p X3CH
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Bkuiag aBTOpoB:

Ban M. — xoHueniwys; METOIMKA; MMPOrpaMMHOE oOecredeHne; BallMIalysl; JaHHble, (GopMalbHBIN aHanm3;
MPOBEpKa JIaHHbBIX; MOATOTOBKA CTAThH; BU3yallH3alysl; (PHHAHCHPOBAHHE.

Kypbanos 3. A. — KoHUETIINS; METOANKA; TPOTPaMMHOE OOeCTIeUeHre; JaHHbIe, (JOPMATTLHBIN aHaIM3; Tpo-
BEpKa JaHHbBIX; IOATOTOBKA CTAThH; PYKOBOJICTBO; (PMHAHCHPOBAHHE.

Ila J]. — Banunmanus; MpoBepKa JaHHBIX; PEIaKTHPOBAHUE; PYKOBOJICTBO;

Bopobvés O. H. — meTonnka; naHable, GopMabHbIA aHaJIH3.

Ban /. — nmpoBepka TaHHBIX; pETAKTUPOBAHKE; PYKOBOJICTBO.

Jlepeyrog /]. M. — iporpaMMHOE 00eCTICUCHHUE; BATUIAIINS;, BU3yaTU3aIIHL.

KOH(l).]Il/IKT HHTEPECOB: aBTOPHI 3aABJISIOT 00 OTCYTCTBHU KOH(bJ'II/IKTa HUHTEPCCOB.
Bcee ABTOPLI IPOYUTAIA U OHOGpI/IHI/I OKOHYATCIbHBIN BAapUAHT PYKOIIUCH.

81



