APPLICATION OF THE KERNEL PROBABILITY DENSITY ESTIMATE TO SOLVE THE PROBLEM OF CLASSIFICATION OF THE TECHNICAL CONDITION OF COMPLEX SYSTEMS

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

Background. In order to increase the versatility of modeling in the process of recognizing the technical condition of a complex system, a solution to the problem of its statistical classification is proposed. Materials and methods. Belonging of the current state to a certain class is estimated by confirming the hypothesis using a decision function based on the concept of "inductive behavior". Results and conclusions. Confirmation is carried out by estimating the probability of the current parameters of the object falling into a two-dimensional parallelepiped of the joint density function, determined using the method of kernel probability density estimation.

Авторлар туралы

Andrey Zayara

Military Innovative Technopolis "ERA"

Хат алмасуға жауапты Автор.
Email: zaw1966@mail.ru

Candidate of technical sciences, senior research fellow of the research department

(41 Pionersky avenue, Anapa, Russia)

Vladimir Fandeev

Branch of the Military Academy of Logistics named after Army General A.V. Khrulev in Penza

Email: fandeevVP@mail.ru

Doctor of technical sciences, professor, lecturer of the sub-department of general professional disciplines

(Military town, Penza, Russia)

Әдебиет тізімі

  1. Gaskarov D.V., Golinkevich T.A., Mozgalevskiy A.V. Prognozirovanie tekhnicheskogo sostoyaniya i nadezhnosti radioelektronnoy apparatury = Forecasting the technical condition and reliability of electronic equipment. Moscow: Sov. radio, 1974:224. (In Russ.)
  2. Kolmogorov A.N. Osnovnye ponyatiya teorii veroyatnostey. 2-e izd. = Basic concepts of probability theory. 2nd ed. Moscow: Nauka, 1974:120. (In Russ.)
  3. Gnedenko B.V. Kurs teorii veroyatnostey: uchebnik. Izd. 3-e, pererab. = Course of probability theory : textbook. 3rd ed., revised. Moscow: Gos. izd-vo fiziko-matematicheskoy literatury, 1961:406. (In Russ.)
  4. Val'd A. Statistical decision functions. Pozitsionnye igry: sb. st. = Positional games : collection of articles. Moscow: Nauka, 1967:524. (In Russ.)
  5. Neyman E. Vvodnyy kurs teorii veroyatnostey i matematicheskoy statistiki = Introductory course in probability theory and mathematical statistics. Moscow: Nauka, 1968:448. (In Russ.)
  6. Fisher R.A. The Logic of Inductive Inference. Journal of the Royal Statistical Society. 1935;98(1):39–82.
  7. Epanechnikov V.A. Nonparametric estimation of multidimensional probability density. Teoriya veroyatnosti i ee primenenie = Probability theory and its application. 1969;14(1):153–158. (In Russ.). Available at: http://www.mathnet.ru/rus/agreement (accessed 18.01.2025).
  8. Seaborn Kdeplot. A Comprehensive Guide. Geeksforgeeks. Available at: https://www.geeksforgeeks.org/seabornkdeplot- a-comprehensive-guide/ (accessed 03.02.2025).

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML


Creative Commons License
Бұл мақала лицензия бойынша қолжетімді Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).