Modern research on molecular identification of Fusarium solani

Cover Page

Cite item

Full Text

Abstract

Background. Fungi of the genus Fusarium are representatives of a biologically heterogeneous group, which includes saprophytes and facultative parasites. Traditional morphological methods for identifying representatives of this genus are often not reliable enough due to the variability of features and the complexity of the Fusarium solani species complex. Materials and methods. The review analyzes modern molecular genetic methods based on the analysis of sequences of markers such as ITS, TEF-1α, RPB2, β-tubulin, NIR, PHO and the SIX gene, which have significantly increased the accuracy of diagnosis, making it possible to distinguish closely related species, races and specialized forms. Recently, special attention has been paid to the advantages of the multilocus approach, which is recognized as the “gold standard” for the identification and taxonomic analysis of Fusarium solani representatives. This research also examines the potential and limitations of next-generation sequencing (NGS), including WGS, tNGS, and mNGS, for comprehensive genomic analysis and diagnostics of pathogens. Results and conclusions. It is noted that the integration of phenotypic and molecular data, as well as the development of genomic technologies, open up new prospects for standardization and increased accuracy of Fusarium solani identification at the species and intraspecific levels.

About the authors

Farkhod S. Rajapov

Center of genomics and bioinformatics Academy of Sciences of the Republic of Uzbekistan

Author for correspondence.
Email: farhod.radjapov@yandex.ru

Senior researcher of the laboratory of plant genomics resistance

(2 Universitetskaya street, village Salar, Tashkent region, Uzbekistan)

Ilkhom B. Salakhutdinov

Center of genomics and bioinformatics Academy of Sciences of the Republic of Uzbekistan

Email: ilkhom.salakhutdinov@genomics.uz

Candidate of biological sciences, head of the laboratory of plant genomics resistance

(2 Universitetskaya street, village Salar, Tashkent region, Uzbekistan)

Venera S. Kamburova

Center of genomics and bioinformatics Academy of Sciences of the Republic of Uzbekistan

Email: kamburova.v@genomics.uz

Doctor of biological sciences, deputy director for science

(2 Universitetskaya street, village Salar, Tashkent region, Uzbekistan)

Elvira A. Latypova

Penza State Agrarian University

Email: latypova.e.a@pgau.ru

Candidate of biological sciences, associate professor of the sub-department of biology, biological technologies and veterinary and sanitary expertise

(30 Botanicheskaya street, Penza, Russia)

Zabardast T. Buriev

Center of genomics and bioinformatics Academy of Sciences of the Republic of Uzbekistan

Email: zburiev@genomics.uz

Doctor of biological sciences, professor, director

(2 Universitetskaya street, village Salar, Tashkent region, Uzbekistan)

References

  1. Badiwe M., Fialho R.O., Stevens C. et al. Fusarium Species Associated with Diseases of Citrus: A Comprehensive Review. Journal of Fungi (Basel). 2025;11(4). doi: 10.3390/jof11040263
  2. O'Donnell K., Sutton D.A., Fothergill A. et al. Molecular phylogenetic diversity, multilocus haplotype nomenclature, and in vitro antifungal resistance within the Fusarium solani species complex. Journal of Clinical Microbiology. 2008;46(8):2477–2490. doi: 10.1128/JCM.02371-07
  3. Lombard L., Van der Merwe N.A., Groenewald J.Z., Crous P.W. Generic concepts in Nectriaceae. Studies in Mycology. 2015;80:189–245. doi: 10.1016/j.simyco.2014.12.002
  4. Mirhasani F., Daie-Ghazvini R., Hashemi S.J. et al. Isolation and identification of Fusarium species from the water systems of ICUs and transplant wards of hospitals and determination of the in vitro susceptibilities of isolates to conventional antifungals. Frontiers in Fungal Biology. 2025;6. doi: 10.3389/ffunb.2025.1564237
  5. Sherimbetov A.G. Molecular genetic identification of Fusarium linc. fungi infecting common wheat (Triticum aestivum L.). Sovremennaya biologiya i genetika = Modern biology and genetics. 2023;(3):24–31. (In Russ.)
  6. Summerell B.A. Resolving Fusarium: Current status of the genus. Annual Review of Phytopathology. 2019;57(1):323–339. doi: 10.1146/annurev-phyto-082718-100204
  7. Abdurakhmonov I.Y. Fusarium-Recent Studies. In BoD–books on demand. London: IntechOpen, 2024:152.
  8. Qiu R., Li C., Zhang Y. et al. Characterization of Fusarium solani Associated with Tobacco (Nicotiana tabacum) Root Rot in Henan, China. Plant Disease. 2024;108(8):2447–2453. doi: 10.1094/PDIS-10-23-2172-RE
  9. Montoya A.M., Grimaldo J., González G.M. Phenotypic and molecular identification of Fusarium spp. clinical and environmental isolates. Gaceta Medica de Mexico. 2024;160(5):527–534. doi: 10.24875/GMM.M24000943
  10. Raja H.A., Miller A.N., Pearce C.J., Oberlies N.H. Fungal Identification Using Molecular Tools: A Primer for the Natural Products Research Community. Journal of Natural Products. 2017;80(3):756–770. doi: 10.1021/acs.jnatprod.6b01085
  11. Mirhendi H., Ghiasian A., Vismer H. et al. Preliminary Identification and Typing of Pathogenic and Toxigenic Fusarium Species Using Restriction Digestion of ITS1-5.8S rDNA-ITS2 Region. Iranian Journal of Public Health. 2010;39(4):35–44. PMID: 23113036; PMCID: PMC3481688
  12. Yassin Z., Salehi Z., Soleimani M. et al. Phylogenetic relationship of Fusarium species isolated from keratitis using TEF1 and RPB2 gene sequences. Iranian Journal of Microbiology. 2022;14(3):417–422. doi: 10.18502/ijm.v14i3.9753
  13. Stakheev A.A., Samokhvalova L.V., Mikityuk O.D., Zavriev S.K. Phylogenetic analysis and molecular typing of trichothetene-producing fungi of the genus Fusarium from Russian collections. Acta Naturae. 2018;10(2):79–92. (In Russ.). doi: 10.32607/20758251-2018-10-2-79-92
  14. Ateş G.Ö. Molecular Identification of Fusarium Isolates from Bozcaada Çavuşand Karalahna Grapesin Türkiye. Journal of Fungi. 2025;11(5). doi: 10.3390/ jof11050373
  15. Erima S., Nyine M., Edema R. et al. Molecular Characterisation of Fusarium Species Causing Common Bean Root Rot in Uganda. Journal of Fungi (Basel). 2025;11(4). doi: 10.3390/jof11040283
  16. Egamberdiev S.S., Ulloa M., Saha S. et al. Molecular Characterization of Uzbekistan Isolates of Fusarium oxysporum f. sp. Vasinfectum. Journal of Plant Science and Molecular Breeding. 2013;2(1). doi: 10.7243/2050-2389-2-3
  17. Wallace E.C., May S.R., Miles L.A., Geiser D.M. Tips for Identifying Fusarium. Part 2: Sequence-based Identification. National Plant Diagnostic Network. 2022. Available at: https://www.npdn.org/newsletter/2022/04/article/1
  18. O’Donnell K., Whitaker B.K., Laraba I. et al. DNA Sequence - Based Identification of Fusarium: A Work in Progress. Plant Disease. 2022;106(6):1597–1609. doi: 10.1094/ PDIS-09-21-2035-SR
  19. Geiser D.M., Jime´nez-Gasco M.M., Kang S. et al. A DNA sequence database for identifying Fusarium. European Journal of Plant Pathology. 2004;110(5):473–479. doi: 10.1023/B:EJPP.0000032386.75915.a0
  20. Ramdass A.C., Villafana R.T., Rampersad S.N. TRI Genotyping and Chemotyping: A Balance of Power. Toxins (Basel). 2020;12(2). doi: 10.3390/toxins12020064
  21. Torres-Cruz T.J., Whitaker B.K., Proctor R.H. et al. FUSARIUM-ID v.3.0: An Updated, Downloadable Resource for Fusarium Species Identification. Plant Disease. 2021;106(6):1610–1616. doi: 10.1094/PDIS-09-21-2105-SR
  22. Fusarium-ID. Available at: http://isolate.fusariumdb.org/blast.php
  23. O’Donnell K., Rooney A.P., Proctor R.H. et al. Phylogenetic analyses of RPB1 and RPB2 support a middle Cretaceous origin for a clade comprising all agriculturally and medically important fusaria. Fungal Genetics and Biology. 2013;52:20–31. doi: 10.1016/j.fgb.2012.12.004
  24. Schoch C.L., Sung G.H., López-Giráldez F. et al. The Ascomycota tree of life: a phylum- wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Systematic Biology. 2009;58(2):224–239. doi: 10.1093/sysbio/syp020
  25. Gavrilova O., Orina A., Trubin I., Gagkaeva T. Identification and Pathogenicity of Fusarium Fungi Associated with Dry Rot of Potato Tubers. Microorganisms. 2024;12(3). doi: 10.3390/microorganisms12030598
  26. Minaeva L.P., Samokhvalova L.V., Zavriev S.K., Stakheev A.A. The first detection of the fungus Fusarium coffeate in the Russian Federation. Sel'skokhozyaystvennaya biologiya = Agricultural biology. 2022;5(1):131–140. (In Russ.). doi: 10.15389/agrobiology. 2022.1.131rus
  27. Egamberdiev Sh., Salahutdinov I., Abdullaev A. et al. Detection of Fusarium oxysporumf. sp. vasinfectum race 3 by single-base extension method and allele-specific polymerase chain reaction. Canadian Journal of Plant Pathology. 2014;36(2):216–223. doi: 10.1080/ 07060661.2014.905496
  28. Egamberdiev Sh.Sh., Salakhutdinov I., Abdullaev A. et al. Use of the β-tubulin gene for species and race identification of the genus Fusarium. Dostizheniya i perspektivy eksperimental'noy biologii rasteniy: sb. nauch. tr. Mezhdunar. nauch.-prakt. konf. = Achievements and prospects of experimental plant biology: proceedings of the International scientific and practical conference. Tashkent, 2013:56–63. (In Russ.)
  29. Yan K., Dickman M.B. Isolation of a beta-tubulin gene from Fusarium moniliforme that confers cold-sensitive benomyl resistance. Applied and Environmental Microbiology. 1996;62(8):3053–3056. doi: 10.1128/aem.62.8.3053-3056.1996
  30. Nosratabadi M., Kachuei R., Rezaie S., Harchegani A.B. Beta-tubulin gene in the differentiation of Fusarium species by PCR-RFLP analysis. Infez Med. 2018;26(1):52–60. PMID: 29525798.
  31. Stakheev A.A., Khaĭrulina D.R., Riazantsev D.Yu., Zavriev S.K. Phosphate permease gene as a marker for the specific identification of toxigenic fungus Fusarium cerealis. Russian Journal of Bioorganic Chemistry. 2013;39(2):153–160. doi: 10.1134/ s1068162013020131
  32. Radzhapov F., Egamberdiev Sh.Sh., Salakhutdinov I.B. et al. Identification of Fusarium oxysporum f. sp. vasinfecum (race 8) using the high-copy phosphate permease gene. Uzbekskiy biologicheskiy zhurnal = Uzbek Biological Journal. 2014;(4):43–45. (In Russ.)
  33. Jangir P., Mehra N., Sharma K. et al. Secreted in Xylem Genes: Drivers of Host Adaptation in Fusarium oxysporum. Frontiers in Plant Science. 2021;12:628611. doi: 10.3389/fpls.2021.628611
  34. Jobe T.O., Abdurakhmonov I.Y., Ulloa M. et. al. Molecular Characterization of Fusarium Isolates from Upland Cotton Roots in Uzbekistan and Whole-Genome Comparison with Isolates from the United States. Phytopathology. 2025;115(1):54–65. doi: 10.1094/ PHYTO-04-24-0152-R
  35. Wu L., Hwang S.F., Strelkov S.E. [et al.]. Pathogenicity, Host Resistance, and Genetic Diversity of Fusarium Species under Controlled Conditions from Soybean in Canada. Journal of Fungi (Basel). 2024;10(5). doi: 10.3390/jof10050303
  36. Coleman J.J. The Fusarium solani species complex: ubiquitous pathogens of agricultural importance. Molecular Plant Pathology. 2016;17(2):146–158. doi: 10.1111/ mpp.12289
  37. Aoki T., O’Donnell K., Homma Y., Lattanzi A.R. Sudden-Death Syndrome of Soybean Is Caused by Two Morphologically and Phylogenetically Distinct Species within the Fusarium solani Species Complex: F. virguliforme in North America and F. tucumaniae in South America. Mycologia. 2003;95(4):660–684. doi: 10.1080/15572536.2004.11833070
  38. Šišić A., Baćanović-Šišić J., Al-Hatmi A.M.S. et al. The 'forma specialis' issue in Fusarium: A case study in Fusarium solani f. sp. pisi. Scientific Reports. 2018;8(1252). doi: 10.1038/s41598-018-19779-z
  39. Rezaee S., Gharanjik S., Mojerlou S. Identification of Fusarium solani f. sp. cucurbitae races using morphological and molecular approaches. Journal of Crop Protection. 2018;7(2):161–170. Available at: https://jcp.modares.ac.ir/article-3-16491-en.html
  40. Radzhapov F., Egamberdiev Sh., Salakhutdinov I. et al. Using single-copy genes to identify Fusarium phytopathogens in Uzbekistan. Vazhnye napravleniya organizatsii nauchnykh issledovaniy v oblasti selektsii i semenovodstva: materialy Resp. nauch.- prakt. konf. = Important areas of scientific research in the field of selection and seed production: Proceedings of the Republic scientific and practical conference. Tashkent, 2013:293–295. (In Russ.)
  41. Mullakhunov B.T., Radzhapov F.S., Egamberdiev Sh.Sh. Identification of Fusarium spp. species based on the TEF-1α gene. Problemy i perspektivy povysheniya effektivnosti biologicheskikh metodov zashchity rasteniy ot vrednykh organizmov: materialy Resp. nauch.-prakt. konf. = Issues and prospects for increasing the effectiveness of biological methods of plant protection from pests: Proceedings of the Republic scientific and practical conference. Tashkent, 2015:154. (In Russ.)
  42. Radzhapov F.C., Mullakhunov B.T., Egamberdiev Sh.Sh. Combined analysis methods for the detection of soil phytopathogens. Problemy i perspektivy povysheniya effektivnosti biologicheskikh metodov zashchity rasteniy ot vrednykh organizmov: materialy Resp. nauch.-prakt. konf. = Issues and prospects for increasing the effectiveness of biological methods of plant protection from pests: Proceedings of the Republic scientific and practical conference. Tashkent, 2015:116. (In Russ.)
  43. Raja H.A., Miller A.N., Pearce C.J., Oberlies N.H. Fungal Identification Using Molecular Tools: A Primer for the Natural Products Research Community. Journal of natural products. 2017;80(3):756–770. doi: 10.1021/acs.jnatprod.6b01085
  44. Xu Q., Chen Q., Qiu W. et al. Application of targeted next-generation sequencing for pathogens diagnosis and drug resistance prediction in bronchoalveolar lavage fluid of pulmonary infections. Frontiers in Cellular and Infection Microbiology. 2025;15. doi: 10.3389/fcimb.2025.1590881
  45. Gu W., Miller S., Chiu C.Y. Clinical Metagenomic Next-Generation Sequencing for Pathogen Detection. Annual Review of Pathology. 2019;14:319–338. doi: 10.1146/annurev- pathmechdis-012418-012751
  46. Chiu C., Miller S. Next-generation sequencing. Molecular Microbiology: Diagnostic Principles and Practice. 3-d ed. Washington, 2016:68–79. doi: 10.1128/ 9781555819071.ch6
  47. Goodwin S., McPherson J.D., McCombie W.R. Coming of age: ten years of next-generation sequencing technologies. Nature Reviews Genetics. 2016;17(6):333–351. doi: 10.1038/nrg.2016.49
  48. Mitchell S.L., Simner P.J. Next-generation sequencing in clinical microbiology: are we there yet? Clinics in laboratory medicine. 2019;39(3):405–418. doi: 10.1016/ j.cll.2019.05.003
  49. Yang J., Mao A., Zhang J. et al. Whole-Genome Sequencing of Fusarium oxysporum f. sp. cucumerinum Strain Race-4 Infecting Cucumber in China. Plant Disease. 2023;107(4):1210–1213. doi: 10.1094/PDIS-08-22-1815-A
  50. Kambli P., Ajbani K., Andrews A.A. et al. Targeted Next Generation Sequencing (tNGS) for detection of drug-resistant tuberculous meningitis: Is this sequencing technology ready for prime time? Indian Journal of Medical Microbiology. 2024;51. doi: 10.1016/j.ijmmb.2024.100665
  51. Gökdemir F.Ş., İşeri Ö.D., Sharma A. et al. Metagenomics Next Generation Sequencing (mNGS): An Exciting Tool for Early and Accurate Diagnostic of Fungal Pathogens in Plants. Journal of Fungi (Basel). 2022;8(11). doi: 10.3390/jof8111195
  52. Sáenz V., Lizcano Salas A.F., Gené J., Celis Ramírez A.M. Fusarium and Neocosmospora: fungal priority pathogens in laboratory diagnosis. Critical Reviews in Microbiology. 2024;1:1–14. doi: 10.1080/1040841X.2024.2369693

Supplementary files

Supplementary Files
Action
1. JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».