<u> — ПРИРОДНЫЕ ПОЛИМЕРЫ —</u>

УДК 541.64:547.9

ВЫДЕЛЕНИЕ СЕРИЦИНА ИЗ КОКОНОВ ШЕЛКОПРЯДА *Bombyx mori*, ЕГО ХАРАКТЕРИСТИКИ И БИОЛОГИЧЕСКИ АКТИВНАЯ ДОБАВКА НА ЕГО ОСНОВЕ ДЛЯ ПРОФИЛАКТИКИ САХАРНОГО ДИАБЕТА

© 2024 г. А. А. Сарымсаков^а, С. С. Ярматов^а, Х. Э. Юнусов^{а, *}

^аИнститут химии и физики полимеров Академии наук Республики Узбекистан 100128 Ташкент, ул. А. Кадыри, 7°, Узбекистан *e-mail: haydar-yunusov@rambler.ru Поступила в редакцию 26.02.2024 г. После доработки 11.03.2024 г. Принята к публикации 25.03.2024 г.

На основе серицина, выделенного из коконов шелкопряда $Bombyx\ mori$, получена биологически активная добавка для профилактики сахарного диабета. Посредством гидролиза нитей шелкопряда $Bombyx\ mori$ в водной среде при температуре 110° С и давлении $0.143\ M\Pi a$ в течение $24\ v$ выделен раствор серицина. Методом выпарки фильтрата в роторном испарителе получен порошок чистого серицина с молекулярной массой 72×10^3 и выходом 29.8%. Последующим повторным гидролизом порошка чистого серицина с указанной молекулярной массой в водной среде при температуре 130° С и давлении $2.8\ M\Pi a$ в течение $120\ mu$ выделен порошок серицина с молекулярной массой $(5-6)\times10^3$, содержащий свободные аминокислоты, с выходом 18.6%. Методом высокоэффективной жидкостной хроматографии, вискозиметрии и $10\ mu$ и $10\ mu$ указанной молекулярная масса и функциональные группы серицина. Образцы серицина с различной молекулярной массы испытаны на крысах с алиментарной гипергликемией. При введении серицина, содержащего свободные аминокислоты с молекулярной массой $(5-6)\times10^3$, в дозе $65\ mv$ /кг два раза в день отмечено снижение уровня сахара в крови крыс на 159.5% через $30\ mu$ дней по сравнению с контрольной группой.

DOI: 10.31857/S2308113924010057, **EDN:** NOMXKN

ВВЕДЕНИЕ

На сегодняшний день в мире более 500 млн человек страдают сахарным диабетом: из них более 425 млн, т.е. фактически каждый шестнадцатый взрослый в мире, страдает сахарным диабетом второго типа [1, 2]. По прогнозам ученых к 2025 г. только в Китае будут диагностированы 30 миллионов случаев сахарного диабета [3].

Разработка специальных биологически активных добавок (БАД) различной функциональной направленности для профилактики и комплексного лечения распространенных заболеваний, в том числе диабета, является одной из актуальных проблем развития современной химии, фармакологии и медицины [4—6].

В настоящее время число сахароснижающих синтетических препаратов достаточно велико [7]. К ним относятся производные сульфонилмочевины, бигуаниды, производные тиазолидинона, ингибиторы дипептидилпептидиазы, инкретины, метформины и другие [8]. Эти препараты

синтетического происхождения получают посредством химического синтеза, и они при длительном приеме могут оказывать отрицательное действие на здоровые органы больных сахарным диабетом второго типа [9].

В настоящее время БАД занимают промежуточное положение между лекарственными препаратами и продуктами питания. Сегодня БАД можно рассматривать как реальные средства для профилактики, лечения и химиопрофилактики рака, атеросклероза, сердечно-сосудистых заболеваний, сахарного диабета и других болезней цивилизации в качестве вспомогательных лечебных средств [10].

Особую актуальность представляет создание новых БАД для профилактики и лечения сахарного диабета, учитывая, что этот путь является наиболее доступным и эффективным в решении рассматриваемой проблемы из-за наличия природных и не вредных для организма растительных и животных источников сырья [11].

На сегодня существуют как минимум два типа диабета, и это принципиально разные болезни [12, 13].

Первый тип болезни возникает вследствие отсутствия в организме собственного инсулина, при этом больные диабетом первого типа не могут жить без инъекций инсулина.

Второй тип возникает из-за нехватки инсулина в организме больных вследствие несбалансированного питания, избыточного употребления углеводов.

Наибольшему риску диабета подвержены люди с генетической предрасположенностью к диабету; люди, имеющие избыточный вес, с завышенными показателями холестерина и триглициридов, с пассивным образом жизни и люди пожилого возраста [14—16].

БАД на основе растительного и животного происхождения вошли в медицинскую практику как чистые препараты, так и всевозможные их комбинации [17, 18].

В настоящее время известны диабетические сахароснижающие свойства препаратов растительного происхождения на основе травы стевии, топинамбура, инулина и янтарной кислоты, а также белков, полипептидов животного происхождения, содержащих заменимые и незаменимые аминокислоты, такие как валин, лейцин, изолейцин, лизин, метионин, треонин, триптофан, фениланин и другие [19].

Серицин состоит из полипептидов с молекулярной массой 400×10^3 , 250×10^3 , 110×10^3 и имеет уникальный аминокислотный состав с высоким содержанием серина. В серицине присутствуют различные аминокислоты – серин (30– 39%), глицин (14–16%), аспарагиновая кислота 6 (11-15%) и треонин (8-10%). Суммарное содержание аминокислот с гидроксильными группами (-ОН), включая серин и треонин, составляет около 40%. Кислые аминокислоты, содержащие карбоксильные группы (-СООН), и основные аминокислоты, имеющие аминогруппы (-NH₂), также преобладают. Содержание аминокислот с полярной боковой цепью – более 80%. Большая часть химической структуры серицина до сих пор неясна, но серицин, вероятно, имеет много гидрофильных групп с высокой полярностью в виде боковых цепей [20].

Серицин в структуре шелковых волокон формирует три слоя. В верхнем слое шелковых волокон содержится серицин А с относительно высокой молекулярной массой до 400×10^3 , нерастворимый в горячей воде, в котором содержание азота (17.2%) превалирует над содержанием аминокислот (треонин, глицин, серин и аспарагиновая кислота). В среднем слое содержится

серицин В со средней молекулярной массой 250×10^3 , где содержание азота составляет 16.8%. Аминокислотный состав среднего слоя такой же, как в верхнем слое, и дополнительно содержит триптофан [21].

В нижнем, близком к центру слое, содержится серицин С со средней молекулярной массой 110×10^3 , где содержание азота составляет 16.6%. Аминокислотный состав серицина С не отличается от предыдущих двух слоев и дополнительно содержит аминокислоту — пролин [22].

Известен [23] способ получения серицина с молекулярной массой $(140-110)\times 10^3$ и олигомера серицина с молекулярной массой $(5-6)\times 10^3$, обладающий биологической активностью с сахароснижающим и кардиотропным действием.

Цель настоящей работы — выявление условий выделения чистого серицина из коконов шелкопряда *Вотвух тогі*, создание на его основе биологически активной добавки для коррекции обменных процессов при сахарном диабете второго типа, а также определение его физико-химических и сахароснижающих свойств.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

В качестве объектов исследований были выбраны некондиционные коконы *Вотвух тогі*, производимые Обществом с ограниченной ответственностью "Inter Silk Pro" (Узбекистан). Основные используемые реактивы: спирт этиловый (96.0%, кат. № 1.59010), литий хлорид (кат. № 203637, 98.0%), ацетон (кат. № 650501, 99.9%), хлороформ (кат. № 650498, 99.9%), тетрахлор метан (кат. № 270652, 99.9%), диметилформамид (кат. № 227056, 99.8%), препарат метформин 500 мг (Общество с ограниченной ответственностью "Озон", Россия). Для получения дистиллированной воды использовали дистиллятор DZ-10L11 (Китай).

Очистку некондиционных коконов *Вотвух тогі* от органических и неорганических примесей осуществляли по методике [24]. При этом некондиционные коконы последовательно обрабатывали четыреххлористым углеродом и хлороформом трехкратно в течение 1 ч при температуре 50°С. Далее минеральные примеси удаляли из некондиционных коконов с помощью смеси этанол—дистиллированная вода при соотношении 70:30 (об. %) трехкратно в течение 1 ч при температуре 50°С. [25]. Наличие ионов СІт в фильтрате контролировали качественной реакцией с AgNO₃. Степень чистоты некондиционных коконов *Вотвух тогі* определяли по ГОСТ 5556-81.

Освобожденные от жиро-восковых фракций волокнистые шелковые нити обрабатывали при

модуле 1 : 10 дистиллированной водой в автоклаве "IcanClave STE-29-D" (Китай) в емкости из нержавеющей стали в плотно закрытом состоянии при температуре 110° C в течение 24 ч при давлении 0.143 МПа. Далее осадок фильтровали и, выпаривая фильтрат при $85 \pm 5^{\circ}$ C в течение 2 ч, получали порошок чистого серицина.

Для получения низкомолекулярного серицина, содержащего свободные аминокислоты, проводили повторный гидролиз серицина в водной среде при модуле 1:10 (порошок серицин и дистиллированная вода). Гидролиз проводили при температуре 130° С в течение 120 мин и давлении 2.8 МПа. Далее осадок фильтровали и, выпаривая фильтрат в роторном испарителе "RE100-Pro" (Китай) при $85 \pm 5^{\circ}$ С в течение 2 ч, получали порошок чистого серицина. Полученный серицин, содержащий свободные аминокислоты, использовали в качестве биологически активной добавки.

Характеристическую вязкость серицина определяли вискозиметрическим методом [26] при помощи вискозиметра Уббелоде в 2.5 М растворе LiCl в диметилформамиде при 25°С. Молекулярную массу серицина рассчитывали по уравнению Марка—Куна—Хаувинка [27] с использованием параметров $K = 1.23 \times 10^{-3}$, $\alpha = 0.91$, величины которых зависят от природы полимера, растворителя и температуры.

Также молекулярную массу серицина определяли электрофоретическим методом [28, 29], при этом водный раствор серицина был разделен по методике [30] на 6 фракций, различающихся молекулярной массой. Для определения молекулярной массы 130 мг серицина растворяли в растворителе, содержащим 389 мг CaCl₂, 388 мкл этилового спирта и 544 мкл дистиллированной воды. Смесь перемешивали в течение 5 ч до полного растворения серицина. Раствор центрифугировали на приборе "Cenlee 20K" (Китай) в течение 20 мин при частоте вращения 8000 об./мин. Центрифугат диализовали через полупроницаемую целлюлозную мембрану с молекулярной массой $(8-14) \times 10^3$ [31]. Распределение молекулярных масс раствора серицина измеряли электрофорезом на многоцелевой системе электрофореза EW-28571-02 (Германия) в геле додецилсульфат-полиакриламид натрия.

ИК-спектроскопические исследования образцов серицина выполняли по методике [32] с использованием ИК-Фурье спектрометра "Inventio-S" ("Bruker") в спектральном диапазоне $4000 \pm 500 \, \text{cm}^{-1}$.

Аминокислотный состав серицина шелка определяли на приборе "Agilent 6400 Series Triple Quadrupole LC/MS Systems", ("Shimadzu") методом, представленным в статье А. Steven и D. Cohen [33].

Острую внутрижелудочную токсичность образцов серицина изучали по методике [34, 35] на 25 белых мышах обоего пола с массой тела 18—22 г. Животных разделили на пять групп по пять штук в группе. Животным четырех опытных групп натощак вводили водную суспензию препарата в желудок при помощи шприца с металлическим зондом (игла с тупым концом) в дозах 2000, 2500, 3000, 3500, 4000 мг/кг массы тела. Большие дозы препарата вводили в два приема с интервалом в 1 ч. Животные находились под ежечасным наблюдением в течение первого дня эксперимента в лабораторных условиях и в дальнейшем в динамике в течение двух—трех недель.

Учитывали внешний вид и поведение животных, состояние шерстяного покрова и видимых слизистых оболочек, отношение к пище, подвижность, ритм и частоту дыхания. Обращали внимание на время возникновения и характер интоксикации, оценивали ее тяжесть, обратимость, определяли срок гибели животных. На основании полученных данных при помощи статистической обработки методом В.Б. Прозоровского вычисляли величины Π

Пятая группа животных служила контролем. Все экспериментальные животные содержались в одинаковых условиях вивария на сбалансированном рационе питания по содержанию белков, жиров и углеводов со свободным доступом к воде и пище.

Сахароснижающий эффект серицина различной молекулярной массы исследовали на крысах по методике [36]. Для этого у крыс половозрелого возраста воспроизводили алиментарную гипергликемию путем введения раствора глюкозы в дозе 150 мг/кг однократно. Уровень глюкозы в крови определяли глюкометром через 1 и 3 ч после введения инъекции. Исследования проводились в пяти группах животных по пять штук в каждой. Исследуемое соединение в дозе 65 мг/кг вводили в брюшную полость один день и за 1 ч до воспроизведения модели алиментарной гипергликемии. В качестве сравнения для оценки сахароснижающего эффекта использовали препарат метформин в дозе 500 мг.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Известно, что природная шелковая композиционная нить *Вотвух тогі* состоит из 67–70% волокон нерастворимого в воде серицина, 25–30% водорастворимого серицина, выполняющего функцию клеящего агента фиброиновых волокон; 0.5–1.0% жиро-восковых и 0.5–2.0% минеральных примесей [37–39].

На первом этапе исследований разработан способ получения очищенных от жира восковых

и минеральных примесей шелковых нитей путем их последовательной обработки полярными и неполярными растворителями.

Известно [40], что методы получения серицина с использованием кислых и щелочных сред в присутствии поверхностно-активных компонентов [41] неприемлемы, так как получаемый серицин будет загрязнен компонентами использованных сред.

Для получения чистого серицина проводили исследования гидролиза очищенных шелковых волокон в среде дистиллированной воды в

автоклаве. Результаты исследований представлены в табл. 1.

Как видно, в процессе гидролиза очищенных шелковых нитей в течение 24 ч при температуре 110°С и давлении 0.143 МПа выход водорастворимого серицина из гидролизата составил 29.8%.

Посредством вакуумной возгонки и сушкой получена порошковая форма водорастворимого серицина со средней молекулярной массой 72×10^3 .

В табл. 2 представлен аминокислотный состав чистого серицина, определенный известным

Таблица 1. Получение чистого серицина из очищенных шелковых волокон в водной среде в автоклаве при разных значениях давления и температуры (условия гидролиза: $T = 110^{\circ}$ C, P = 0.143 мПа, время 24 ч)

Температура, °С	Давление, МПа	Время, ч	Выход серицина, %	ММ серицина <i>M</i> × 10 ³
100	0.104	12	14.2	110
		18	15.6	100
		24	17.8	92
110	0.143	12	22.4	85
		18	26.2	78
		24	29.8	72
120	0.198	12	21.3	65
		18	19.1	60
		24	16.8	56

Таблица 2. Аминокислотный состав серицина со средней молекулярной массой 72×10^3

Аминокислота	Количество аминокислоты, мг/г	Процент от общего количества аминокислот, %			
Серин (Ser)*	211.79	24.799			
Аспарагиновая кислота (Asp)*	135.67	15.886			
Глицин (Gly)**	104.84	12.277			
Аргинин (Arg)*	82.02	9.604			
Треонин (Thr)*	75.05	8.788			
Аланин (Ala)**	62.24	7.288			
Глутаминовая к-та (Glu)*	57.24	6.703			
Тирозин (Туг)***	44.88	5.255			
Валин (Val)**	29.06	3.403			
Изолейцин (Ile)**	11.59	1.358			
Лейцин (Leu)**	11.07	1.296			
Гистидин (His)*	10.38	1.216			
Цистеин (Cys)*	6.66	0.779			
Пролин (Рго)*	4.71	0.551			
Фенилаланин (Phe)***	4.50	0.527			
Метионин (Met)**	1.47	0.172			
Лизин HCl (Lys)*	0.82	0.096			

^{*}Гидрофильные аминокислоты.

^{**}Гидрофильные аминокислоты.

^{***}Ароматические аминокислоты.

_					
Время, ч	Выход серицина, %	Характеристическая вязкость $[\eta_w]$ мг/г	ММ серицина $M \times 10^3$		
0	29.8	0.81	72		
30	26.7	0.58	56		
60	23.4	0.33	32		
90	21.9	0.24	18		
120	18.6	0.16	5-6		

Таблица 3. Характеристики выделенного олигомера серицина, содержащего свободные аминокислоты (условия гидролиза: T = 130°C, P = 2.8 мПа)

методом [26] высокоэффективной жидкостной хроматографии. Из таблицы следует, что в серицине из определенных аминокислот превалируют серицин, аспарагиновая кислота, глицин, аргинин, треонин, аланин, глутаминовая кислота, тиразин и валин, которые представляют большой интерес при создании БАД.

Далее для получения БАД, обладающых сахароснижающим эффектом, 3%-ный водный раствор полученного серицина со средней ММ 72×10^3 подвергали повторному гидролизу при температуре 130° С и давлении 2.8 МПа в течение 120 мин. Гидролизованный серицин высушивали

Таблица 4. Аминокислотный состав экстракта олигомера серицина с молекулярной массой $(5-6) \times 10^3$

Аминокислота	Количество свободных аминокислот, мг/г					
Серин (Ser)*	0.356					
Аспарагин (Asn)*	0.084					
Глицин (Gly)**	3.849					
Аргенин (Arg)*	7.819					
Треонин (Thr)*	0.099					
Аланин (Ala)**	0.025					
Глутамин (Gln)*	0.235					
Тирозин (Туг)***	0.253					
Валин (Val)**	0.499					
Цистеин	1.666					
Изолейцин (Ile)**	0.195					
Лейцин (Leu)**	0.162					
Гистидин (His)*	0.150					
Пролин (Рго)*	0.111					
Фенилаланин (Phe)***	0.118					
Метионин (Met)**	0.109					
Лизин (Lys)*	0.510					
Триптофан (Тгр)***	0.167					

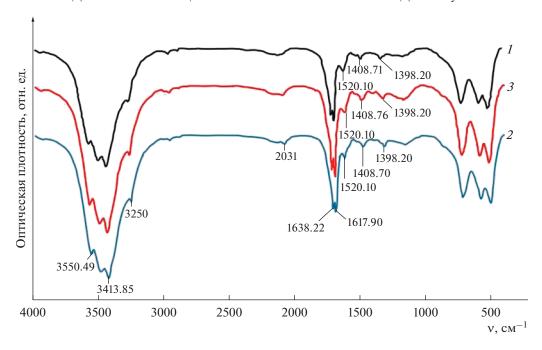
^{*}Гидрофильные аминокислоты.

путем выпарки фильтрата в роторном испарителе. Характеристики полученного олигомера серицина приведены в табл. 3. С увеличением времени повторного гидролиза серицина снижается выход и вязкость растворов олигомеров серицина и через 120 мин достигается предельное значение молекулярной массы олигомера равное $(5-6) \times 10^3$.

При дальнейшем увеличении времени повторного гидролиза серицина происходит его полный гидролиз до аминокислот.

Далее в составе олигомера серицина, содержащего свободные аминокислоты, был определен состав. Результаты исследований представлены в табл. 4.

Высушенный олигомер серицина, подвергнутый повторному гидролизу в течение 120 мин, по результатам высокоэффективной жидкостной хроматографии содержит заменимые аминокислоты серин, аспарагиновую кислоту, глицин, аланин и незаменимые аминокислоты треонин, валин, изолейцин, лейцин, гистидин, фенилаланин, метионин, лизин и имеет среднюю молекулярную массу $(5-6) \times 10^3$.


Далее проведены ИК-Фурье-спектроскопии исследования методом полученных образцов серицина с различной молекулярной массы. На рис. 1 представлены ИК-спектры образцов серицина различной ММ.

Видно, что образцы серицина, полученные из некондиционных коконов, демонстрируют характерные полосы поглощения в диапазоне 400—3550 см⁻¹. Полосы поглощения в области 3500—3200 см⁻¹ характеризуют плоскостные деформационные колебания гидроксильных групп серицина. Полоса поглощения при 1638.22 см⁻¹ подтверждает абсорбцию Амида I, которая возникает преимущественно из-за колебания растяжения С=О. Полоса поглощения при 1617.90 см⁻¹ принадлежит Амиду II, который возникает из-за произвольной структуры клубков серицина [42].

Кроме того, обнаружено, что характеристические полосы поглощения Амида III, который возникает в основном из-за валентного колебания

^{**}Гидрофильные аминокислоты.

^{***}Ароматические аминокислоты.

Рис. 1. ИК-фурье-спектры серицина различной молекулярной массы, полученные в различных условиях. Серицин со средней молекулярной массой $M \times 10^3 = 110$ (I), 72 (I) и 5–6 (I).

CN, связанного с изгибным колебанием в плоскости N-H, смещается в диапазон от 1520.10 до 1408.76 см $^{-1}$ [43].

При повторном гидролизе серицина с $M = 72 \times 10^3$ происходит снижение молекулярной массы до $(5-6) \times 10^3$ за счет деструкции макромолекул. При этом в ИК-спектре (рис. 1. кривая 3) интенсивность полосы поглощения повышается за счет увеличения содержания свободных аминогрупп в структуре олигомеров серицина.

Как описано в литературе [23], серицин с молекулярной массой (5—6) × 10³ обладает биологической активностью и сахароснижающим эффектом. Далее образцы олигомеров серицина, содержащие заменимые и незаменимые аминокислоты, были подвержены медико-биологическим испытаниям.

Исследованы острая токсичность и сахароснижающая активность полученных олигомеров серицина. По результатам исследований острой токсичности установлено, что при введении внутрь перорально олигомеров серицина, содержащих свободные аминокислоты, экспериментальным животным в дозах 2000, 2500, 3000, 3500 и 4000 мг/кг не наблюдалось проявление интоксикации и летальный исход.

Изучением острой внутрижелудочной токсичности олигомеров серицина на белых мышах установлена среднесмертельная доза (ЛД $_{50}$) препарата на уровне 3150 (3420.5—2874.6) мг/кг. Следовательно, по классификации лекарственных средств по токсичности олигомер серицина,

содержащий свободные аминокислоты, с молекулярной массой (5—6) \times 10^3 относится к IV группе малотоксичных веществ.

Специфическую активность олигомера серицина оценивали на половозрелых белых крысах, у которых воспроизведена модель алиментарной гипергликемии путем введения раствора глюкозы однократно в дозе 150 мг/кг внутрь. В группу опытных крыс вводили препарат в дозе 65 мг/кг два раза в день. Результаты медико-биологических испытаний представлены в табл. 5.

Как следует из таблицы, уровень сахара в крови контрольной группы крыс с гипергликемией в течение 30 дней с начала эксперимента увеличился на 255.5%. В группе крыс с гипергликемией, получивших однократно серицин с молекулярной массой 110×10^3 , через 30 дней уровень сахара по сравнению с контрольной группой снизился до 169.5%.

В группе крыс с гипергликемией, получивших в течение 30 дней одноразово серицин с молекулярной массой 72×10^3 , уровень сахара по сравнению с контрольной группой снизился до 172.0%. В группе крыс, получивших олигомеры серицина с молекулярной массой $(5-6) \times 10^3$, содержащий свободные аминокислоты, уровень сахара по сравнению с контрольной группой снизился до 159.5%.

При этом уровень сахара в крови крыс, получивших в течение 30 дней препарат метформин в дозе 65 мг/кг, по сравнению с контрольной группой снизился на 195.7%.

Экспериментальные группы	Изменения уровня сахара крыс с гипергликемией, ммоль/л					Показатель изменения		
крыс с массой 230 ± 20 г с гипергликемией	0	3 ч	12 ч	24 ч	96 ч	10 дней	30 дней	уровня сахара, %
Контрольная группа	11.6	12.9	14.3	20.4	24.8	28.7	29.6	255.0
Группа, получившая метформин, 500 мг	11.6	12.1	13.4	16.4	20.3	21.8	23.1	195.7
Группа, получившая серицин с $M = 110 \times 10^3$	11.8	12.8	14.1	20.0	24.0	27.1	20.0	169.5
Группа, получившая серицин с $M = 72 \times 10^{3}$	11.8	12.2	14.1	16.9	18.8	19.6	20.3	172.0
Группа, получившая серицин с $M = (5-6) \times 10^3$, содержащая своболные аминокислоты	11.6	12.8	14.2	21.2	20.1	19.3	18.5	159.5

Таблица 5. Изменения во времени содержания сахара в крови экспериментальных крыс (доза каждого препарата составляла 65 мг/кг в день)

На основании результатов исследований снижение уровня сахара при введение крысам с гипергликемией в течение 30 дней олигомера серицина, содержащего свободные аминокислоты, было выше по сравнению с группой крыс, получивших препарат метформин.

Таким образом, снижение уровня сахара в крови крыс объясняется получением в течение 30 дней олигомера серицина, содержащего незаменимые аминокислоты — лейцин, аргинин, треонин, валин, изолейцин, гистидин, фенилаланин, метионин и лизин, так как секрецию инсулина в организме усиливают аминокислоты, особенно лейцин и аргинин.

ЗАКЛЮЧЕНИЕ

Разработан способ очистки некондиционных коконов и волокнистых отходов шелковых предприятий от жиро-восковых и минеральных примесей; получены чистые шелковые нити, состоящие только из серицина.

Посредством гидролиза чистых шелковых волокон в водной среде в замкнутой системе при 110°С и давлении 0.143 мПа в течение 24 ч был получен чистый раствор серицина.

Посредством концентрирования водного раствора с последующей сушкой получен порошок серицина разной молекулярной массы. Определены аминокислотный состав, молекулярная масса и физико-химические свойства серицина.

Посредством повторного гидролиза чистого серицина с молекулярной массой 72 × 10³ в водной среде при 130°С и давлении 2.8 МПа в течение 120 мин получена композиция олигомеров серицина со средней молекулярной массой

(5-6) × 10³, содержащая заменимые и незаменимые аминокислоты, которые могут быть использованы в качестве биологически активной добавки с сахароснижающим эффектом при лечении сахарного диабета второго типа.

Установлено, что олигомеры серицина, содержащие свободные аминокислоты, с молекулярной массой $(5-6) \times 10^3$ обладают более высоким сахароснижающим эффектом по сравнению с контрольной группой, получавшей препарат метформин.

Таким образом, создание БАД на основе олигомеров серицина, содержащего в своем составе заменимые и незаменимые аминокислоты, может способствовать снижению уровня сахара больных с диабетом второго типа без оказания отрицательного действия на здоровые органы больных.

Работа выполнена в рамках Программы научно-исследовательских работ Института химии и физики полимеров Академии наук Республики Узбекистан на 2020—2024 гг. "Фундаментальные аспекты создания наноструктурных полимерных форм лекарственных средств и изделий медицинского назначения — будущее наночастиц в организме".

СПИСОК ЛИТЕРАТУРЫ

- Saeedi P., Petersohn I., Salpea P., Malanda B., Karuranga S., Unwin N., Colagiuri S., Guariguata L., Motala A.A., Ogurtsova K., Shaw J.E., Bright D., Williams R. // Diabetes Res. Clin. Pract. 2019. V. 157. P. 107843.
- 2. Feng M., Jiang G., Sun Y., Aharodnikau U.E., Yunusov Kh.E., Liu T., Zeng Zh., Solomevich S. O. // Inorg. Chem. Commun. 2022. V. 144. P. 109896.

- 3. Liu J., Liu M., Chai Z., Li C., Wang Y., Shen M., Zhuang G., Zhang L. // The Lancet Regional Health-Western Pacific. 2023. V. 33. P. 100700.
- 4. *Герасименко Н.Ф.*, *Позняковский В.М.*, *Челнакова Н.Г.* // Человек. Спорт. Медицина. 2017. Т. 17. № 1. С. 81.
- 5. *Позняковский В.М., Чугунова О.В., Тамова М.Ю.* Пищевые ингредиенты и биологически активные добавки. М.: ИНФРА-М, 2017.
- Позняковский В.М. // Индустрия питания. 2017. № 3. С. 8.
- 7. *Балаболкин М.И.* Дифференциальная диагностика эндокринных заболеваний. М: Медицина, 2005.
- 8. Эндокринология: национальное руководство / Под ред. И.И. Дедова, Г.А. Мельниченко. М.: ГЭОТАР-Медиа, 2021.
- Padhi S., Nayak AK., Behera A. // Biomed Pharmacother. 2020 V. 131. P. 110710.
- 10. *Беспалов В.Г., Некрасова В.Б. //* Рос. мед.-биол. вестн. имени академика И. П. Павлова. 2001. № 3–4. С. 198.
- 11. *Северина А.С., Шестакова М.В.* // Сахарный диабет. 2007. Т. 10. № 2. С. 77.
- 12. *Drayton D.J., Birch R.J., D'Souza-Ferrer C., Ayres M., Howell S.J., Ajjan R.A.* // Brit. J. Anaesthesia. 2022. V. 128. № 5. P. 820.
- 13. *Шарофова М.У., Сагдиева Ш.С., Юсуфи С.Д.* // Вестн. Авиценны. 2019. Т. 21. № 3. С. 505.
- 14. *Курбанова М.Г.* Дис. ... д-ра тех. наук. Кемерово: ФГБОУ ВПО КемТИПП, 2012.
- 15. *Danzon P.M.*, *Chao L.W.* // J. Health Econ. 2000. V. 19. № 2. P. 160.
- 16. *Danzon P.M.* // Regulation. 2000. V. 23. № 1. P. 59.
- 17. *Cropley M., Banks A.P., Boyle J.* // Phytother. Res. 2015. V. 29. № 12. P. 1935.
- 18. *Бабий Н.В., Помозова В.А., Пеков Д.Б.* // Техника и технология пищевых производств. 2016. Т. 41. № 2. С. 16.
- 19. Salmerón J., Manson J.E., Stampfer M.J., Colditz G.A., Wing A.L., Willett W.C. // JAMA. 1997. V. 277. № 6. P. 474.
- 20. Takasu Y., Yamada H., Tsubouchi K. // Biosci. Biotechnol. Biochem. 2002. V. 66. № 12. P. 2716.
- 21. Kunz R.I., Brancalhao R.M., Ribeiro L.F., Natali M.R. // BioMed Res. Int. 2016. V. 2016. P. 4.
- 22. *Padamwar M.N., Pawar A.P.* // J. Sci. Ind. Res. 2004. V. 63. P. 325.

- 23. Очилова Р.Х. // Пат. 2385649 Россия. 2010.
- 24. *Sarymsakov A.A.*, *Yarmatov S.S.*, *Yunusov K.E.* // Russ. J. Appl. Chem. 2022. V. 95. № 7. P. 990.
- 25. *Sarymsakov A.A.*, *Yarmatov S.S.*, *Yunusov K.E.* // Polymer Science A. 2023. V. 65. № 3. P. 257.
- 26. *Холмуминов А.А.* Дис. ... д-ра физ.-мат. наук. Ташкент: ИХФП АН РУз, 2008.
- 27. Pawcenis D., Syrek M., Koperska M.A., Łojewski T., Łojewska J. // RSC Adv. 2016. V. 6. P. 38074.
- 28. *Остерман Л.А.* Методы исследования белков и нуклеиновых кислот: электрофорез и ультрацентрифугирование. М.: Наука, 1981.
- 29. *Wöltje M., Kölbel A., Aibibu D., Cherif C. //* Int. J. Mol. Sci. 2021. V. 22. № 10565. P. 8.
- 30. *Aoki M., Masuda Y., Ishikawa. K., Tamada Y. //* Molecules. 2021. V. 26. P. 6320.
- 31. *Сафонова Л.А., Боброва М.М., Агапова О.И., Архи- пова А.Ю., Гончаренко А.В., Агапов И.И.* // Вестн. трансплантологии и иск. органов 2016. Т. 18. № 3. С. 78.
- 32. *Чиргадзе Ю.Н.* ИК-спектры и структура полипептидов и белков. М.: Наука, 1965.
- 33. *Cohen S.A.*, *Strydom D.J.* // Analyt. Biochem. 1988. V. 174. № 1. P. 6.
- 34. *Гуськова Т.А.* Токсикология лекарственных средств. М.: Изд. дом "Русский врач". 2003.
- 35. Доклинические исследования лекарственных средств / Под ред. А.В. Стефанова. Киев: Авиценна, 2002.
- 36. Rattana S., Katisart T., Butiman C., Sungthong B. // Pharmacognosy J. 2017. V. 9. № 4. P. 560.
- 37. *Mondal M., Trivedy K., N. Kumar S.* // Caspian J. Env. Sci. 2007. V. 5. № 2. P. 69
- 38. *Ling S., Qin Z., Li C., et al.* // Nat. Commun. 2017. V. 8. № 1387. P. 7.
- 39. *Торстен К., Рене Ш., Хелен В.* // Пат. 2463036 Россия. 2012.
- 40. Aramwit P., Siritientong T., Srichana T. // Waste Manag. Res. 2012. V. 30. № 3. P. 220.
- 41. *Rajput S.K., Kumar M.* // IOSR J. Polym. Text. Eng. 2015. V. 2. № 3. P. 31.
- 42. *Шерова З.У., Ишматов А.Б., Джонмуродов А.С., Усманова С.Р., Мухидинов З.К.* // Докл. АН Респ. Таджикистан. 2018. Т. 61. № 1. С. 56.
- 43. Saha S., Mahdal M.I.H., Sheikh N.R.K., Habib M.A. // J. Textile Sci. Eng. 2019. V. 9. P. 390.