Osseointegrated exoprosthesis system: a pilot preclinical study
- Authors: Sinegub A.V.1, Chupryaev V.A.2, Demchenko K.N.2, Voronin S.E.3, Eidelman K.V.1
-
Affiliations:
- NewStep LLP
- Kirov Military Medical Academy
- Almazov National Medical Research Center
- Issue: Vol 31, No 4 (2025)
- Pages: 143-151
- Section: Theoretical and experimental studies
- URL: https://journal-vniispk.ru/2311-2905/article/view/357902
- DOI: https://doi.org/10.17816/2311-2905-17749
- ID: 357902
Cite item
Full Text
Abstract
Background. Traditional socket prostheses suffer from several limitations, including skin complications, unstable fixation, and restricted patient mobility. Osseointegrated exoprostheses represent a promising alternative as they attach to the human body via an implant surgically placed in the residual bone. This solution provides secure fixation and is particularly effective for patients with short or pathological residual limbs.
The aim of the study — to evaluate the biocompatibility and safety of a domestically developed osseointegration system for femoral exoprosthetics using a large animal model.
Methods. A customized titanium osseointegrated implant, adapted based on CT data, was placed in one sexually mature minipig using a two-stage surgical protocol. During the 3-month observation period, a comprehensive set of clinical, laboratory, and radiographic examinations was performed. The study also involved routine stoma care and bacteriological monitoring. At the end of the period, an implant pull-out test was conducted.
Results. The animal was able to endure weight-bearing on the prosthesis while standing and walking. Body weight increased by approximately 10 kg. The implant pull-out force was 400 N, indicating the formation of a mechanical bond with the bone. Manageable complications were noted during the observation, specifically the development of anemia and asymptomatic bacterial colonization of the stoma with Staphylococcus spp. at 107 CFU/ml. There were no clinical signs of infection or systemic inflammatory response.
Conclusion. The study demonstrated the feasibility of the successful and safe application of the evaluated osseointegration system in a large animal model. The observed complications were not critical. The findings confirm the biocompatibility and functionality of the system, justifying the need for further expansive preclinical studies.
Full Text
##article.viewOnOriginalSite##About the authors
Andrey V. Sinegub
NewStep LLP
Author for correspondence.
Email: a.sinegub@yandex.ru
ORCID iD: 0000-0003-2619-3691
SPIN-code: 7170-6994
Cand. Sci. (Tech.)
Russian Federation, St. PetersburgVictor A. Chupryaev
Kirov Military Medical Academy
Email: v.chupryaev@gmail.com
ORCID iD: 0009-0005-6030-6460
SPIN-code: 5007-7607
Cand. Sci. (Med.)
Russian Federation, St. PetersburgKonstantin N. Demchenko
Kirov Military Medical Academy
Email: phantom964@mail.ru
ORCID iD: 0000-0001-5437-1163
SPIN-code: 7549-2959
Russian Federation, St. Petersburg
Stepan E. Voronin
Almazov National Medical Research Center
Email: voronin_se@almazovcentre.ru
ORCID iD: 0000-0003-4773-1663
SPIN-code: 5569-4092
Russian Federation, St. Petersburg
Konstantin V. Eidelman
NewStep LLP
Email: eidelmankv@niuitmo.ru
ORCID iD: 0009-0006-8555-4046
Russian Federation, St. Petersburg
References
- Гросс Д.Д., Грюнфельд М., Розбрух С.Р., Рейф Т.Дж., Холлварт Д.С. Применение метода остеоинтеграции на нижней конечности — современное состояние и перспективы: обзор литературы. Травматология и ортопедия России. 2024;30(3):120-131. (На англ.). doi: 10.17816/2311-2905-17465. Gross J.D., Grunfeld M., Rozbruch S.R., Reif T.J., Hoellwarth J.S. Lower Extremity Osseointegration — A Review of the Current Experiences and Expectations. Traumatology and Orthopedics of Russia. 2024;30(3): 120-131. doi: 10.17816/2311-2905-17465.
- Karimi M.T., Kavyani M., Mehrvar A. Osseointegration: A new approach to improve functional performance of prostheses – a systematic review of the literature. Cur Orthop Pract. 2024;35(6):229-236. doi: 10.1097/BCO.0000000000001275.
- Li Y., Brånemark R. Osseointegrated prostheses for rehabilitation following amputation: The pioneering Swedish model. Unfallchirurg. 2017;120(4):285-292. doi: 10.1007/s00113-017-0331-4.
- Li Y., Felländer-Tsai L. The bone anchored prostheses for amputees – Historical development, current status, and future aspects. Biomaterials. 2021;273:120836. doi: 1016/j.biomaterials.2021.120836.
- Juhnke D.L., Beck J.P., Jeyapalina S., Aschoff Horst H. Fifteen years of experience with Integral-Leg-Prosthesis: Cohort study of artificial limb attachment system. J Rehabil Res Dev. 2015;52(4):407-420. doi: 10.1682/JRRD.2014.11.0280.
- Jah F., Blöchle C., Aschoff H.H. Comparative analysis between bone-guided (endo-exo) prostheses and soft-tissue guided shaft prostheses for rehabilitation after thigh amputation, with special emphasis on its socio-economic aspects. J Surg Rehabil. 2019;1(1):1-9. doi: 10.31487/j.JSR.2019.01.03.
- Overmann A.L., Forsberg J.A. The state of the art of osseointegration for limb prosthesis. Biomed Eng Lett. 2019;10(1):5-16. doi: 10.1007/s13534-019-00133-9.
- Tropf J.G., Potter B.K. Osseointegration for amputees: Current state of direct skeletal attachment of prostheses. Orthoplastic Surgery. 2023;12(C):2028. doi: 10.1016/j.orthop.2023.05.004.
- Handford C., McMenemy L., Kendrew J., Mistlin A., Akhtar M.A., Parry M. et al. Improving outcomes for amputees: The health-related quality of life and cost utility analysis of osseointegration prosthetics in transfemoral amputees. Injury. 2022;53(12): 4114-4122. doi: 10.1016/j.injury.2022.10.007.
- Brånemark R.P., Hagberg K., Kulbacka-Ortiz K., Berlin Ö., Rydevik B. Osseointegrated Percutaneous Prosthetic System for the Treatment of Patients With Transfemoral Amputation: A Prospective Five-year Follow-up of Patient-reported Outcomes and Complications. J Am Acad Orthop Surg. 2019;27(16): e743-e751. doi: 10.5435/JAAOS-D-17-00621.
- Hagberg K., Ghassemi Jahani S.A., Kulbacka-Ortiz K., Thomsen P., Malchau H., Reinholdt C. A 15-year follow-up of transfemoral amputees with bone-anchored transcutaneous prostheses. Bone Joint J. 2020;102-B(1): 55-63. doi: 10.1302/0301-620X.102B1.BJJ-2019-0611.R1.
- Al Muderis M., Khemka A., Lord S.J., Van de Meent H., Frölke J.P. Safety of Osseointegrated Implants for Transfemoral Amputees: A Two-Center Prospective Cohort Study. J Bone Joint Surg Am. 2016;98(11):900-909. doi: 10.2106/JBJS.15.00808.
- Örgel M., Aschoff H.H., Sedlacek L., Graulich T., Krettek C., Roth S. et al. Twenty-four months of bacterial colonialization and infection rates in patients with transcutaneous osseointegrated prosthetic systems after lower limb amputation — A prospective analysis. Front Microbiol. 2022;13:1002211. doi: 10.3389/fmicb.2022.1002211.
- Hagberg K., Ghasemi Jahani S.A., Omar O., Thomsen P. Osseointegrated prostheses for the rehabilitation of patients with transfemoral amputations: A prospective ten-year cohort study of patient-reported outcomes and complications. J Orthop Translat. 2022;38:56-64. doi: 10.1016/j.jot.2022.09.004.
- Sinegub A.V., Lopota A.V. Finite element analysis of a screw with cellular structure and bone thread for direct bone anchoring of prostheses. Biomed Engineering. 2022;55(6):425-428. doi: 10.1007/s10527-022-10150-1.
- Sinegub A.V., Lopota A.V., Suvorov V.A. Personalized Finite Element Analysis of an Endo-Exo Prosthetics System under Conditions of Osseointegration. Biomed Engineering. 2022;56(1):40-43. doi: 10.1007/s10527-022-10162-x.
- Grisez B.T., Hanselman A.E., Boukhemis K.W., Lalli T.A.J., Lindsey B.A. Osseointegrated Transcutaneous Device for Amputees: A Pilot Large Animal Model. Adv Orthop. 2018;2018:4625967. doi: 10.1155/2018/4625967.
- Shelton T.J., Beck J.P., Bloebaum R.D., Bachus K.N. Percutaneous osseointegrated prostheses for amputees: Limb compensation in a 12-month ovine model. J Biomech. 2011;44(15):2601-2606. doi: 10.1016/j.jbiomech.2011.08.020.
- Farrell B.J., Prilutsky B.I., Kistenberg R.S., Dalton J.F. 4th, Pitkin M. An animal model to evaluate skin-implant-bone integration and gait with a prosthesis directly attached to the residual limb. Clin Biomech (Bristol). 2014;29(3):336-349. doi: 10.1016/j.clinbiomech.2013.12.014.
Supplementary files






