КОНТРОЛЬ ОТКЛОНЕНИЙ ПРОФИЛЯ ПОВЕРХНОСТИ ОБТЕКАТЕЛЕЙ В ПРОЦЕССЕ ОБРАБОТКИ

В.А. Рогов, А.Г. Эпов, Д.А. Королёв

Кафедра технологии машиностроения металлорежущих станков и инструментов Российский университет дружбы народов Ул. Миклухо-Маклая, 6, Москва, Россия, 117198

Дано описание метода контроля отклонений профиля поверхности обтекателей в процессе обработки. Представлена установка для контроля отклонений. Приведено программное обеспечение. Показаны перспективы развития автоматизированных систем в области контроля качества изделий.

Важнейшим элементом современных скоростных ракет, управляемых методом радиолокационного наведения на цель, является головной антенный обтекатель, который во многом определяет летно-технические характеристики летательного аппарата.

В настоящее время значительная часть зенитных и авиационных ракет оснащены радиопрозрачными обтекателями из стеклокерамических материалов. Данные материалы отличаются высокой стойкостью к пылевой и дождевой эрозии, сохраняют стабильность характеристик при длительном воздействии морской воды и повышенной влажности без каких-либо покрытий, что делает их незаменимыми для использования в конструкциях летательных аппаратов (ЛА), эксплуатация которых предусматривает воздействие жестких климатических условий, например, для ракет классов «воздух—воздух», «воздух—земля», «земля—воздух», эксплуатирующихся без применения транспортно-пусковых контейнеров.

Головной обтекатель современного ЛА является многофункциональным агрегатом, обеспечивающим теплозащиту и несущую способность при аэродинамическом воздействии, а являясь составной частью системы наведения, он должен обладать прекрасными радиотехническими характеристиками (РТХ) [2].

Основной причиной отклонения PTX является нестабильность распределения электрической толщины стенки по материалу оболочки.

Электрическая толщина стенки оболочки ($\Delta \varphi$) характеризуется двумя параметрами: геометрической толщиной (t) и диэлектрической проницаемостью материала (ϵ). Поэтому точность определения электрической толщины и точность контроля и управления t при заданном ϵ определяет в конечном итоге уровень РТХ.

Высокий уровень диэлектрической проницаемости материала обусловливает повышенные требования к точности геометрических размеров оболочки для обеспечения требований к радиотехническим характеристикам обтекателя. Повышенная чувствительность к концентраторам напряжений из-за нулевой

открытой пористости материала предъявляет повышенные требования к чистоте поверхности оболочки, к исключению всякого рода подрезов, резких переходов и т.п. [2].

Определены основные технологические режимы шлифования заготовок обтекателей, обеспечивающие толщину стенки оболочки с точностью до 0.02 мм, шероховатость поверхности не более Ra = 0.8—1.2 мкм.

Для обеспечения требований к РТХ перспективных ракет необходимо ужесточить допуск на толщину стенки в 4—5 раз, поэтому создаются соответствующие обрабатывающее оборудование и средства контроля.

Опыт разработки показывает, что для обеспечения удовлетворительных требований по PTX точность мех обработки должна быть в пределах 0.01 мм с точностью контроля толщины стенки на уровне ± 0.005 мм и изменении диэлектрической проницаемости по изделию в пределах 1%.

При исследовании точности обработки несложных деталей используются методы математической статистики с построением по результатам замеров многих деталей, кривых распределения и точечных диаграмм. Однако эти методы анализа из-за сложной конфигурации обтекателей не дают полной информации о точности обработки.

Современные методы исследования точности обработки поверхности обтекателей не позволяют осуществлять контроль непосредственно на станке. В ходе технологического процесса механической обработки необходимо постоянно снимать и устанавливать заготовку на станок. Такой метод контроля поверхности обтекателя уменьшает точность и увеличивает вспомогательное время механической обработки.

В настоящее время контроль отклонения внутреннего контура осуществляется при помощи приспособления — глубиномера (рис. 1).

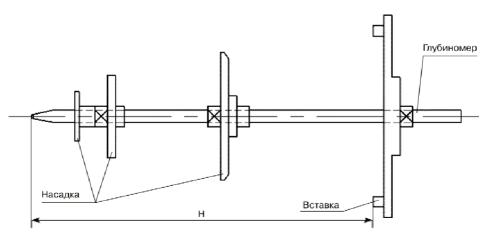


Рис. 1. Глубиномер

Насадки глубиномера выставляются по высоте на определенные контрольные сечения. Размер насадок соответствует контрольному диаметру на конт-

рольном сечении. Далее глубиномер с насадками заводится внутрь обтекателя до соприкосновения насадки с внутренней поверхностью заготовки. Поджимается траверса до соприкосновения вставок с торцом обтекателя. Таким образом, определяется отклонение реального контура от идеального в контрольных сечениях.

Данный метод контроля отклонений внутреннего контура определяет отклонения только в определенных контрольных сечениях, что явно недостаточно. Для того чтобы увидеть полную картину отклонений, необходимо на глубиномер установить n насадок. Это приводит к резкому усложнению приспособления, а также существенному удорожанию. Точность данного метода контроля 0,1 мм, что также не соответствует современным требованиям, предъявляемым к изготовляемой продукции.

Наиболее приемлемым является метод исследования точности обработки путем изучения профилограмм, снятых с обработанных поверхностей. С помощью профилограмм можно определить вид и величину погрешности в каждом конкретном месте обрабатываемой поверхности [1; 4].

Разработанный метод позволяет осуществлять контроль отклонений профиля поверхности обтекателей, не снимая заготовку со станка, что повышает точность изготовления изделия, так как нет необходимости заново выставлять заготовку после каждого измерения.

На рис. 2 представлена разработанная установка, необходимая для контроля отклонений формы поверхности обтекателя в процессе обработки.

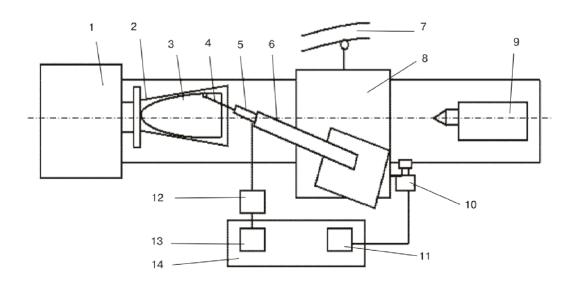


Рис. 2. Блок-схема установки:

1 — передняя бабка станка; 2 — барабан; 3 — заготовка; 4 — щуп датчика; 5 — датчик; 6 — шлифовальная головка; 7 — копир; 8 — суппорт; 9 — задняя бабка станка; 10 — преобразователь угловых перемещений ЛИР-137А; 11 — интерфейсная плата; 12 — блок управления БВ-4310; 13 — АЦП; 14 — промышленный компьютер Прибор БВ-4310 имеет следующие технические характеристики: диапазон показаний по шкале, мкм — 60, (-10, +50); — 600 (-100, +500); цена деления шкалы, мкм — 1 или 10; дискретность цифрового отсчета, мкм — 0,1; диапазон показаний цифрового отсчета, мкм — ± 999 ,9; предельная погрешность показаний, мкм не более в диапазоне (-10, +20) — 1,0;

в диапазоне (-100, +500) — 5,0; аналоговый выходной сигнал постоянного тока чувствительность, мВ/мкм — 20 — (+10, -2)

измерительное усилие, H

Метод основан на измерении щупом датчика, при нулевых нагрузках станка, величин отклонений обработанной поверхности при движении самого датчика по копиру (программе).

 $-1.5^{+0.5}$

Измерение отклонений формы производится следующим образом. После механической обработки поверхности заготовки 3 по копиру (программе) 7 на шпиндель шлифовальной головки 6 вместо алмазного круга устанавливается индуктивный датчик прибора БВ-4310 5 вместе со щупом 4. Индуктивный датчик 5 через блок управления БВ-4310 12 и плату 13 типа АЦП РСІ-1710 соединен с компьютером 14. Продольное перемещение суппорта 8 отслеживается преобразователем угловых перемещений 10 модели ЛИР-137А через специальную шестерню и рейку станка.

ЛИР-137А электрически связан с компьютером посредством интерфейсной платы 11 типа ЛИР-940-Р (РСІ). Щуп датчика подводится к торцу заготовки обтекателя 3. Настраивается копировальная система с копиром 7 на «нуль». С помощью продольной подачи щуп с датчиком перемещается по копиру (программе) по неподвижной измеряемой поверхности и измеряет отклонения формы обработанной поверхности от копира (программы). Данные от замеров датчиков блока управления БВ-4310 и продольных перемещений ЛИР-137А передаются в компьютер, (передача происходит в режиме реального времени), где они обрабатываются. Величины отклонений выдаются в виде таблиц или графиков [3].

На рис. 3 представлена общая блок-схема алгоритма интерфейсной программы ввода/вывода обмена данными с датчиком ЛИР-137A и блоком управления БВ-4310 [3].

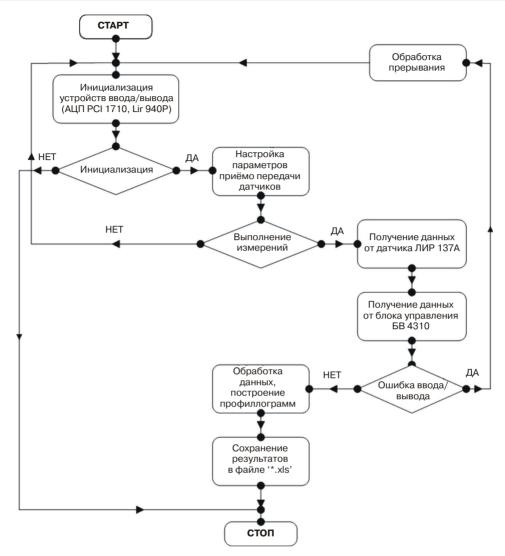


Рис. 3. Блок-схема алгоритма программы ввода/вывода

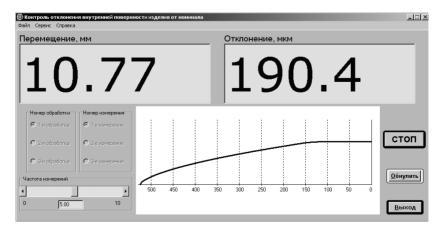


Рис. 4. Главное окно программы ввода/вывода

На рис. 5 представлен пример профилограммы внутреннего контура обтекателя после проведения механической обработки поверхности. Данная профилограмма иллюстрирует зависимость отклонения профиля обрабатываемой поверхности обтекателя (H, мкм) от продольного перемещения щупа датчика (L, мм).

Рис. 5. Профилограмма отклонений внутреннего контура обтекателя

По результатам профилограмм можно судить о том, где конкретно необходимо провести доводку толщины стенки обтекателя. Таким образом, данный метод позволяет, не снимая со станка заготовку, проводить контроль отклонения профиля поверхности. При этом всю доводку можно осуществить по внутренней поверхности, следовательно, наружный контур остается без изменений и не «страдает» от требований по толщине стенки.

Следует заметить, что для повышения точности измерений по данному методу к форме и размерам щупа предъявляются высокие требования. В данном случае при копировальной обработке на станке в расчете координат копира заложен алмазный круг с рабочей радиусной поверхностью R. Следовательно, у щупа должна быть рабочая поверхность с тем же радиусом R. Чем меньше отклонение рабочей поверхности щупа от теоретической инструмента и точнее статическая настройка системы «копир—копировальное устройство—шуп—заготовка», тем точнее будут произведены измерения

Итак, с помощью данной установки можно определить величину и характер погрешности отклонения контура обработанной поверхности, не снимая заготовки со станка. При этом ориентировочно погрешность измерения составляет для копировального станка 1М63 — 20 мкм (5 мкм для прибора БВ-4310, 5 мкм для щупа, 10 мкм — настройка).

ЛИТЕРАТУРА

- [1] Высоцкий А.В., Карпович И.Б., Соболев М.П., Этингоф М.И. Приборы автоматического управления обработкой на металлорежущих станках. М.: Машиностроение, 1995.
- [2] Русин М.Ю., Ромашин А.Г. Состояние и перспективы создания головных обтекателей летательных аппаратов. Ракетно-космическая техника: фундаментальные и приклад-

- ные проблемы / Труды 2-й международной научной конференции, часть 1. М.: Изд. МГТУ им. Н.Э.Баумана, 2003. С. 13—27.
- [3] Архангельский А.Я. Программирование в С++ Builder 6. М.: Бином, 2005.
- [4] Pогов В.А., Позняк Γ . Γ .. Методика и практика технических экспериментов. М.: Машиностроение, 2005.

CHECKING THE DEFLECTIONS OF PROFILE OF BLISTERS SURFACE IN PROCESS OF PROCESSING

V.A. Rogov, A.G. Epov, D.A. Korolyov

Pulpit of technology of mechanical engineering machine-tools and instruments
Peoples' Friendship University of Russia
Miklukho-Maklaya str., 6, Moscow, Russia, 117198

The method description of checking the deflections of profile of blister surface in about-cession of processing is given. Presented installation for checking the deflections. Software was designed. The prospects of automatic system development in the field of checking a quality of products were shown.