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Abstract. This study examines methodologies for detecting abnormalities in Combined Cycle
Power Plants (CCPPs) through application of vibration signal analysis and machine learning
algorithms. Models’ performances were evaluated using different key metrics. The results
indicated that the Random Forest classifier, particularly in combination with ECPT data,
exhibited superior performance, achieving perfect scores across all metrics. It highlights the
robustness of the Random Forest algorithm when applied to ECPT data, making it the most
effective approach for vibration anomaly detection. The K-NN classifier demonstrated
satisfactory performance when applied to AS and BTT data, attaining accuracy scores of 0.49
and 0.52, respectively; however, it exhibited limitations in handling diverse data distributions,
as reflected in its lower accuracy of 0.44 with LDV data. Both GBM and SVM performed
suboptimal, with GBM achieving a maximum accuracy of 0.52 with AS data, while SVM
attained the highest accuracy of 0.49 with the same technique. Findings underscore the critical
importance of selecting an appropriate combination of machine learning models and
vibration measurement techniques to enhance the accuracy of anomaly detection. Eventually,
the Random Forest algorithm is well suited for complex datasets with varied patterns,
while K-NN may serve as an efficient alternative for simpler, more uniform data.

Keywords: Vibration data, Fault diagnosis, Machine learning classification, Condition
monitoring, Combined cycle power plants, CCPP, Predictive maintenance
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HUcTtopus cratbu

[Toctynuna B pegakmuro: 13 mapra 2025 .
JHopaborana: 30 anpens 2025 r.
[punsTa k nyonukamuu: 15 mas 2025 r.

3asBiieHHe 0 KOH(JIUKTE HHTEPecoB

ABTODBI 3a5BJISIIOT 00 OTCYTCTBUH
KOH(IUKTa UHTEPECOB.

3asiBiieHue 0 AOCTYIIHOCTH JaHHbIX:

JlaHHbBIE MOTYT OBITH MPENOCTaBICHBI
TIO 3a1pocy aBTOPOB.

AHHOTauus. M3y4eHbl MeTo0JI0THN 00HAPYKEHHUS OTKIIOHEHHH B 3JIEKTPOCTaH-
IUsSIX KOMOMHUPOBAHHOI'O LMKJIA OCPEACTBOM IPUMEHEHUs aHalu3a CUIHAJIOB
BUOpaLUK U aJIrOPUTMOB MALIIMHHOIO 00yueHHs. Pe3ynbTaThl IOKa3aly, YTO METO,
cityuailHOro neca, 0COOEHHO B COYETaHUHM C JAHHBIMU BUXPETOKOBBIX JJaATUUKOB
NpUOIIKEHUS, IPOAEMOHCTPUPOBAI IPEBOCXOAHYIO 3 HEKTUBHOCTD, JOCTHT-
HYB MJCJIbHBIX PE3yJIbTAaTOB II0 BCEM IOKA3aTeNAM. DTO MOMYEPKUBAET HAJIEK-
HOCTH aJITOPUTMa CIIy4alHOTO Jieca MPU IPHUMEHEHHH K JaHHBIM BUXPETOKOBBIX
JATYHKOB MPUOJIMIKEHUS, UTO JieNIaeT ero Hanbosee 3 PEKTHBHBIM MOIXOI0M JUIS
obOHapyxeHus aHoManuii BuOpanuu. Kimaccudukarop K-NN mpoaeMoHCTpHpO-
BaJl YAOBJIETBOPHTENbHYIO 3(P(HEKTHBHOCTD NMPH NMPUMEHEHHH K JAHHBIM JaT4H-
KOB YCKOPEHUS U JaTUUKH CUHXPOHU3AIMU KPOMKH JIONIATKU, JOCTUTHYB [10Ka3a-
tenei TouHoctu 0,49 u 0,52 COOTBETCTBEHHO; OJJHAKO OH IPOAEMOHCTPUPOBA
OrpaHUYEeHHMs IpU 00pabOTKE Pa3IMUHbIX pacIpeeIeHHH JaHHbIX, UTO OTPAXKEHO
B ero Oosee HU3KoM ToyHOCTH 0,44 C TAHHBIMU JIa3EPHBIX JIOMJIEPOBCKUX BUOPO-
MeTpoB. MaliuHa JUIs MOBBIIECHUS TPaJUEHTa U METO/ OIIOPHBIX BEKTOPOB MOKa-
3aJIM HEONITHMAaJIbHbIE Pe3y IbTaThl, IPUYEM MaIlMHA I HOBBIICHNS TPAAUCHTA
JOCTHUTIIa MaKCUMallbHOW TouHOCTH 0,52 ¢ TaHHBIMHU JaTYMKOB YCKOPEHUS, B TO
BpeMs KaKk METOJ OIOPHBIX BEKTOPOB NOCTUT HauBbicuiell TounoctH 0,49 ¢ TOi
&Ke METONUKOH. Pe3ynbTaThl MOMYEPKUBAIOT KPUTUUECKYIO BaXKHOCTh BBIOOpA
noaxozsueil KOMOMHAIUY MOAENell MallMHHOrO 00y4YeHUsl U METOJI0B U3Mepe-
HYs BUOpAIM Ul MOBBIMICHUS TOYHOCTH OOHapyKeHus aHoManuil. B urore
QITOPUTM CIIyHYaiHOTO Jieca XOPOILO MOAXOTUT IS CIOXKHBIX HAOOPOB JaHHBIX
¢ pa3HOOOpa3HBIMU MOZEISAMH, B TO Bpemst kak K-NN MoxeT ciyKutb 3Qdek-
THUBHOW aJbTEPHATUBOH IS G0see MPOCTHIX M OMHOPOIHBIX JaHHBIX.

KuroueBble ci10Ba: 1aHHbIE 0 BUOpalMU, TUarHOCTHKA HEHCHPABHOCTEH, Kiac-
cn;’pnxauym MAIIUMHHOI'O O6y'{CHI/I$I, MOHUTOPHUHI" COCTOSAHUSA, DJICKTPOCTAHIIUU
komOuHupoBaHHoro 1ukia, CCPP, nporaocTuueckoe o0ciykuBaHue

Bkian aBTopoB

Daxmu A.T.B.X. — METOA0JIOI'vsl, IPpOrpaMMHOC OGGCHC‘-IeHI/Ie, IMIPOBEpPKA, HAIMMCAHUEC — MOATOTOBKA IEPBOHAYAJIBHOTO IIPO-
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Introduction

Vibration analysis is a crucial aspect of con-
dition monitoring in industries that rely on rotating
equipment, such as petrochemical plants and power
plants. In CCPPs, which utilize both gas and steam
turbines, continuous monitoring and evaluation
of vibration signals are essential to ensuring
reliability and efficiency in power generation.
Vibration analysis serves as an effective method
for detecting early signs of mechanical failures,
such as rotary imbalance, coupling misalignment,
and component wear, before they lead to costly
downtime, reduced efficiency, or catastrophic
equipment failure [1;2]. In a CCPPs, vibration
monitoring is particularly critical for primary
energy-generating machinery, such as gas turbines,
where even minor faults like speed fluctuations,
excessive vibration, or timing irregularities, can

result in significant efficiency losses, increased fuel
consumption, and unplanned shutdowns, ultimately
affecting overall plant performance [3; 4]. Figure 1
presents various damages that occurred in the gas
turbine of the Kirkuk power plant located in Iraq.

Multiple factors contribute to vibrations in
gas turbines and other rotating equipment. Common
issues include shaft unbalance, critical speed
occurrence, rubbing, and shorted turns off. Each
of these problems can be detected using specialized
vibration analysis techniques [5; 6]. For example,
shaft unbalance, a leading cause of high-amplitude
vibrations, adversely affects bearings, shafts, and
other rotating components, leading to increased
maintenance costs and reduced operational
efficiency. Figure 2 shows bearing damage due to
misalignment in a gas turbine of the Kirkuk power
plant located in Iraq.

Figure 1.Gas turbine damages in the Kirkuk power plant due to the occurrence of vibrations caused by:
aand b — steam flow fluctuations; ¢ — rubbing

Source: byAI-T.W.K. Fahmi

Figure 2. Bearing damage due to the misalignment in a gas turbine of the Kirkuk power plant located in Iraq
Source: byAl-T.W.K. Fahmi
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Studies suggest that correcting unbalance and
misalignment issues can greatly reduce power
consumption in industrial machinery [7]. Similarly,
critical speed resonance occurs when a machine
operates at or near its natural frequency, causing
excessive wear and potential failure. Preventative
maintenance techniques, such as short-time Fourier
transform (STFT), are often employed to detect
critical speed issues during machine start-up and
shutdown phases [8].

Various condition monitoring techniques are
used to acquire the dynamic signatures of these
mechanical defects. These include Eddy Current
Proximity Transducers (ECPT), Accelerometer
Sensors (AS), Blade Tip Timing (BTT), Laser
Doppler Vibrometers (LDV), and Strain Gauges
(SG), each offering unique advantages and
limitations. ECPT, for instance, provides highly
accurate displacement measurements for high-
speed equipment but requires time consuming
calibration [9]. Accelerometers are versatile and
capable of measuring a wide range of vibration
frequencies, though they are susceptible to electro-
magnetic interference [10]. BTT is a non-intrusive
technique that provides high-resolution data on
blade vibrations, but it is limited to blade tip
measurements [11]. LDV is a highly sensitive con-
tactless measurement method capable of detecting
minute oscillations, though it requires sophisticated
and costly equipment [12]. Finally, SGs are
effective in measuring strain in structural com-
ponents but require precise calibration and are
influenced by temperature variations [13].

Recent advancements in machine learning
(ML) techniques have introduced powerful new
approaches to vibration data analysis and faults in
complex industrial systems diagnostics. ML models
such as Random Forest (RF), Gradient Boosting
Machine (GBM), Support Vector Machine (SVM),
and K-Nearest Neighbors (K-NN) have been
widely used for processing large datasets, detecting
abnormal patterns, and classifying vibration signals
[14]. RF, an ensemble-based decision tree classifier,
is particularly effective in handling high-
dimensional and noisy data, making it well-suited
for ECPT and AS datasets. GBM, another ensemble
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method, sequentially improves predictions by mini-
mizing errors and is particularly useful for structured
datasets, such as those generated by accelero-
meters and strain gauges [15]. SVM, a strong binary
classifier, excels at finding optimal hyperplanes
for separating different vibration patterns, though
its performance is highly dependent on data
structure and dimensionality [16]. K-NN, a distance-
based classifier, operates under the assumption
that a data point’s classification is determined by
its nearest neighbors. Despite its simplicity, K-NN
performs well when dealing with densely clustered
vibration data, such as those obtained from high-
frequency techniques [17]. Its straightforward im-
plementation and low computational requirements
make it particularly useful for real-time industrial
applications where processing power is limited.
Given its efficiency, K-NN serves as a useful
benchmark for comparing more complex models
in vibration classification.

This study aims to evaluate and compare the
effectiveness of RF, GBM, SVM, and K-NN
classifiers in analyzing synthetic vibration data
generated from five monitoring techniques: ECPT,
AS, BTT, LDV, and SG. The synthetic data were
designed to simulate real-world conditions by
varying key parameters such as vibration
frequency, amplitude, and noise levels, allowing
for comprehensive testing across multiple ope-
rational scenarios. To enhance model performance,
preprocessing techniques such as data labeling
(normal vs. abnormal) and outlier removal were
applied. The performance of each classifier was
assessed using standard evaluation metrics,
including accuracy, precision, recall, F1-score, and
the area under the receiver operating characteristic
(ROC AUC) curve.

This study is guided by the following research
questions:

1. Which machine learning classifier demon-
strates the highest accuracy in detecting vibration
anomalies across different monitoring techniques?

2. How do variations in vibration measure-
ment techniques impact classifier performance?

3. Can a specific combination of machine
learning models and monitoring techniques opti-
mize vibration anomaly detection in CCPPs?
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By addressing these questions, this research
seeks to provide valuable insights into the integra-
tion of machine learning with traditional vibration
analysis techniques, ultimately contributing to more
efficient and predictive maintenance strategies in
industrial settings [18].

1. A brief Description of the Most Important
Vibration Measurement Techniques
in Industry

The following is a brief description of the
mechanism of the techniques used in this research
to measure vibration in a gas turbine:

1. 1. Eddy Current Proximity Transducers (ECPT)

ECPTs are widely used in power plants, par-
ticularly for monitoring the movement of the rotat-
ing machinery by detecting changes in proximity
to an electromagnetic field. These sensors are
preferred in high-speed applications and testing
environments due to their reliability.

Research indicates that ECPTs can measure
even the smallest displacement changes, making
them suitable for tracking critical components
such as turbine shafts and bearings [12]. However,
ECPTs have some limitations: they can only sense
movement in one direction, their calibration pro-
cess is highly sensitive, time-consuming, and
requires specialized equipment [19].

1.2. Accelerometer Sensors (AS)

Accelerometers are commonly used for vibra-
tion monitoring due to their high versatility and
responsiveness across a wide frequency range.
They operate based on a mass-spring system,
generating an electrical signal proportional to
acceleration, which is then analyzed to assess
vibration characteristics. These devices are widely
applied in power plants, particularly for monitoring
turbines and evaluating structural integrity'.

However, accelerometers are susceptible to external
vibrations and electromagnetic noise, which can
reduce measurement accuracy and necessitate
frequent recalibration?.

1.3. Blade Tip Timing (BTT)

BTT is an intrusive method commonly used
to detect turbine blade vibrations in combined
cycle power plants (CCPPs). It employs optical or
microwave sensors placed around the rotor to
detect the timing of blade tip passages. Research
has shown that BTT can identify both high- and
low-frequency vibrations without requiring any
modifications to the turbine [11]. For example,
Zhang et al. developed a microwave-based BTT
system in which a patch antenna probe transmits
and receives microwave signals reflected from the
turbine blades, providing highly accurate measure-
ments of blade dynamics [17].

1.4. Laser Doppler Vibrometers (LDV)

Laser Doppler Vibrometers (LDVs) are a con-
tactless and a highly accurate method for measuring
small vibrations using laser beams. They operate
by detecting variations in the frequency of laser
light reflected from a vibrating surface, enabling
real-time observation of rotating equipment. A key
advantage of LDVs is their high sensitivity and
accuracy, making them suitable for detecting even
the smallest vibrations [20]. However, their high
cost and the complex structures required for
implementing control algorithms may limit their
use in large-scale industrial applications. Recent
studies have aimed to improve the applicability of
LDVs by enhancing signal detection for both low-
frequency and high-frequency vibrations [21].

1.5. Strain Gauges (SG)

Strain gauges record distortions caused by
strain or vibration by measuring variations in the
electrical resistance of a small metal strip bonded

! Accelerometer specifications: deciphering an accelerometer’s datasheet. Available from: https://www .scribd.com/
document/650160365/Accelerometer-Specifications-Deciphering-an-Accelerometer-s-Datasheet (accessed: 01.03.2025).
2 Most Common Myths about Accelerometers and Frequency Range. Available from: https://adash.com/articles/myths-

accelerometers-frequency-range/ (accessed: 01.03.2025).
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to a structure. They are particularly useful for moni-
toring large frameworks and support structures in
power plants, as well as detecting structural dis-
tortions over time [13]. However, strain gauges
typically have a low measurement range and can
be affectedby temperature changes. Therefore,
these sensors require precise calibration for accu-
rate strain measurements. Recent developments in
strain gauge technology aim to improve tempera-
ture compensation and enhance accuracy in harsh
environments, making them more reliable for
structural health monitoring throughout a struc-
ture’s lifecycle’.

2. Machine Learning Algorithms
in Vibration Analysis

Machine learning methodologies have signi-
ficantly improved the diagnosis and prediction of
vibrations in complex industrial systems. Many
studies highlight the advantages of using machine
learning for fault detection, particularly in CCPPs,
where early signs of equipment degradation can
greatly impact plant reliability. The following is
a brief description of the machine learning algo-
rithms used in this research for the purpose of
vibration analysis:

2.1. Random Forest (RF)

Random Forest is a widely used ensemble
learning model known for its stability and ability
to handle large numbers of features in vibration
signal classification. It constructs multiple decision
trees during training and integrates their results
to improve classification efficiency. Previous
research has demonstrated that the Random Forest
algorithm performs well in detecting abnormal
patterns from ECPT and accelerometer sensor data
due to its low susceptibility to overfitting and its
strong interpretability in large datasets with many
variables. For example, one study showed that an
RF model trained with synthetic vibration data for
ECPT achieved 100% accuracy in exact measure-
ment [14].

2.2. Gradient Boosting Machine (GBM)

GBM is an ensemble learning method com-
posed of sequentially assembled decision trees,
focusing on error minimization at each stage. This
makes it particularly effective for the discrete
datasets commonly used in vibration analysis.
As misclassified cases are iteratively added to
improve the model, GBM enhances its ability to
identify minute patterns, such as those seen in
accelerometer and strain gauge data. Studies have
shown that GBM efficiently uncovers relation-
ships within data and improves outlier detection by
refining weak learners at each iteration step. In one
study, GBM achieved an accuracy of 0.52 on AS
data, demonstrating its effectiveness in classifying
structured sensor data.

2.3. Support Vector Machine (SVM)

SVM is a well-known classification algo-
rithm that selects the optimal hyperplane to separate
data points. It is particularly effective in cases where
binary classification is essential. Research has
shown that SVM performs well in detecting
vibration abnormalities, especially when using
accelerometer and blade tip timing (BTT) data
[22]. However, its performance dependents on the
dataset structure and its time complexity increases
with large datasets, which can hinder real-time
applications in certain CCPP scenarios [16].

2.4. K-Nearest Neighbors (K-NN)

K-NN is a simple, instance-based learning
model that classifies data points based on their
similarity to neighboring data. Its simplicity makes
it an ideal choice in scenarios where computational
resources are limited, but fast classification is
required. Studies indicate that K-NN performs well
in density-based functions, such as accelerometer
analysis and blade tip timing data, particularly
when dealing with closely grouped datasets [18].
In one study, K-NN achieved accuracy rates of

3 Characteristics of a Strain Gauge Sensor. Bestech Australia. Available from: https://www.bestech.com.au/blogs/
characteristics-of-a-strain-gauge-sensor/ (accessed: 01.03.2025).
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0.49 and 0.52 for AS and BTT data accordingly,
respectively, highlighting its effectiveness as a
lightweight, distance-based classifier in specific
vibration monitoring scenarios [19].

Previous research confirms that combining
vibration measurement techniques with fault
classification algorithms significantly enhances
fault diagnosis in CCPPs. Highly sensitive methods,
such as ECPT and accelerometers, and precise
non-contact methods, such as BTT and LDV,
provide reliable data for analysis. The use of
machine learning models — particularly ensemble
methods like RF and GBM — has improved
classification accuracy in vibration monitoring.
While basic algorithms like K-NN are useful in
limited contexts, real-time anomaly detection often
requires balancing simplicity with execution speed.
This review provides the foundation for the com-
parative analysis conducted in this study, empha-
sizing the importance of selecting appropriate
machine learning models and sensor techniques
based on the specific needs of CCPP vibration
monitoring.

3. Methodology and Its Implementation

The methodology of this study consists of
synthetic data generation, data preprocessing,
machine learning model training, and performance
evaluation. Each step is systematically designed to
evaluate the effectiveness of various vibration
signals analysis methods used in CCPPs for
monitoring and classifying abnormalities.

Step I. Synthetic Data Generation

To simulate real-world vibration monitoring
scenarios, synthetic vibration data was generated
for five commonly used techniques: Eddy Current
Proximity Transducers (ECPT), Accelerometer
Sensors (AS), Blade Tip Timing (BTT), Laser
Doppler Vibrometers (LDV), and Strain Gauges
(SG). The data for each technique was modeled
with varying assumptions regarding frequency,
amplitude, and noise level to better represent the
operating conditions of CCPP systems.

The synthetic data generation process is as
follows:

» Frequency (Hz): Represents the average
number of times per week that each technique is
used. For instance, ECPT was modeled with a fre-
quency of 1,000,000 Hz, while BTT was setat 100 Hz
to reflect their distinct operational characteristics.

» Amplitude: Corresponds to the vibration
signal strength, set to approximate real-world
values. For example, ECPT was assigned an am-
plitude of 100, while LDV was set at 2.5.

= Noise Level: Gaussian noise was added to
the data to simulate environmental interference.
For instance, a noise level of 1.0 was applied to
ECPT data, whereas SG data had a noise level of
0.5, reflecting different levels of noise tolerance
across techniques.

The generated dataset included labeled data
for each technique, where a subset was designated
as ‘normal’ and the rest as ‘abnormal’ to maintain
a binary classification approach. Due to the L and
N nature of the synthetic data, testing, and
evaluation of the model become flexible without
negative influence from real data conditions.

Step II. Data Preprocessing

To ensure the quality and suitability of the
generated dataset for machine learning analysis,
data preprocessing was performed. This process
involved two key steps:

= Labeling: Each dataset was categorized as
“normal” or “abnormal” to establish a binary clas-
sification problem. The “normal” label represents
typical operational behavior, while the “abnormal”
label indicates deviations from expected behavior
that could signal faults or potential issues in CCPP
machinery.

= Qutlier Removal and Clipping: Outliers
were identified and clipped within a specified am-
plitude range (e.g., between —3 and 3) to improve
model training accuracy. This step minimizes the
impact of extreme values and enhances the robust-
ness of classifiers by focusing the model on more
typical operating conditions.

After preprocessing, the data was split into
training (80%) and testing (20%) sets to ensure
a reliable and balanced evaluation of model per-
formance.
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Step II1. Machine Learning Models

Four classifiers were selected for model
training, testing, and feature selection, each chosen
for its ability to handle high-dimensional data and
diverse feature patterns. The selected models include
Random Forest (RF), Gradient Boosting Machine
(GBM), Support Vector Machine (SVM), and
K-Nearest Neighbors (K-NN). The selection aimed
to compare different classifier types, including en-
semble, distance-based, and linear models.

» Random Forest (RF): A machine learning
technique that constructs multiple decision trees
and aggregates their outputs to improve the final
prediction. RF is highly effective for handling high-
dimensional and noisy data, making it particularly
suitable for analyzing complex vibration patterns
recorded in ECPT and AS data. To balance
accuracy and prevent overfitting, the RF model
was trained with 100 trees and a maximum depth
of 10. The details of the algorithm are as follows:

Algorithm 2. Anomaly Detection with Gradient Boosting
Machine (GBM)

1: Input: Vibration monitoring dataset X with features and
labels, where X is split into training and test sets.

: Output: Trained GBM model, Anomaly classification results.
: ProcedureTRAIN_GBM_MODEL(X)

: Preprocess dataset X (feature scaling and outlier removal).

: Initialize GBM with chosen hyper parameters.

: Train the GBM model using the training set.

: Validate performance on the test set.

: Generate precision and recall metrics.

O 0 3 AN bW

: Save the trained model for anomaly detection.

10: End Procedure

Algorithm 1. Anomaly Detection with Random Forest (RF)

1: Input: Vibration monitoring dataset X with features and labels,
where X is split into training and test sets.

2: Output: Trained Random Forest model, Anomaly classifi-
cation results.

3: ProcedureTRAIN_RF _MODEL(X)

4: Preprocess dataset X (normalization and missing value
handling).

5: Train the Random Forest model using the training set.

6: Evaluate the model on the test set.

7: Generate accuracy and classification reports.

8: Save the trained model for anomaly detection.

= Support Vector Machine (SVM): A powerful
binary classification algorithm that identifies the
optimal hyperplane for separating classes, making
it ideal for datasets with well-defined boundaries.
SVM was applied to analyze the BTT and LDV
datasets due to its strong performance in binary
classification tasks. A linear kernel was chosen
after initial experiments indicated that it provided
the best balance between speed and accuracy. The
details of the algorithm are as follows:

Algorithm 3. Anomaly Detection with Support Vector Machine
(SVM)

9: End Procedure

= Gradient Boosting Machine (GBM): A ma-
chine learning method for constructing an ensemble
by training a series of models sequentially while
minimizing generalization error. GBM was chosen
because it is well suited for structured data such as
the vibrations from AS and SG. Specifically, for
the GBM model, the learning rate was set to 0.1,
and the maximum depth was set to 5 to achieve
optimal evaluation results while minimizing com-
putational time. The details of the algorithm are
as follows:
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1: Input: Vibration monitoring dataset X with features and labels,
where X is split into training and test sets.

2: Output: Trained SVM model, Anomaly classification results.
3: ProcedureTRAIN_SVM_MODEL(X)

4: Standardize dataset X (scale features to have zero mean and
unit variance).

5: Choose the appropriate kernel type (e.g., linear, radial basis
function (RBF)) based on dataset characteristics.

6: Train the SVM model using the training set, optimizing for
the margin that separates data points.

7: Validate model performance on the test set using accuracy,
precision, and recall.

8: Tune hyper parameters (e.g., C, gamma) to improve per-
formance if necessary.

9: Save the trained SVM model for anomaly detection.

10: End Procedure

» K-Nearest Neighbors (K-NN): A distance-
based classifier that assigns labels to data points
based on the majority label of their nearest neigh-
bors, providing simplicity and interpretability.
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K-NN was particularly effective for datasets with
densely clustered points, such as AS and BTT. The
model was implemented with n_neighbors=>5,
as this configuration was found to optimize clas-
sification accuracy while minimizing computational
load. The details of the algorithm are as follows:

Algorithm 4. Anomaly Detection with K Nearest Neighbors
(K-NN)

1: Input: Vibration monitoring dataset X with features and labels,
where X is split into training and test sets.

2: Output: Trained K-NN model, Anomaly classification results.
3: ProcedureTRAIN_KNN_MODEL(X)

4: Standardize dataset X (normalize features to a common
scale).

5: Choose the value of K based on cross-validation.

6: Train K-NN model on the training set.

7: Evaluate K-NN model accuracy on the test set.

8: Compute F1-score and confusion matrix.

9: Save trained model for anomaly detection.

10: End Procedure

Each model was trained on the preprocessed
synthetic data to distinguish between “normal” and
“abnormal” vibration patterns. Model parameters
were fine-tuned to optimize performance based on
the characteristics of each technique’s dataset.

Step IV. Model Training and Testing

For each machine learning model employed,
training and testing were conducted on the synthetic
dataset to evaluate its performance in classifying
vibration anomalies. The training process for each
model followed these steps:

» Train-Test Split: The dataset for each
technique was divided into 80% for training and
20% for testing.

» Model Training: Each model was trained
on the labelled training dataset. For some models,
such as K-NN and GBM, hyper parameters (e.g.,
the number of neighbors and learning rate) were
adjusted based on initial training and validation
results.

» Prediction and Evaluation: After training,
each model was evaluated on the reserved test set.
Predictions were made for all test samples, and the
predicted labels were compared to the actual class
labels to assess performance.

Step V. Performance Evaluation Metrics

To comprehensively evaluate the performance
of each classifier, multiple metrics were used to
provide a well-rounded assessment of each model’s
effectiveness:

» Accuracy: Measures the percentage of
correct predictions, indicating the overall effective-
ness of the model in classifying normal and ab-
normal patterns.

= Precision: Evaluates the proportion of true
positive predictions among all positive predictions,
assessing the model’s ability to minimize false
positives.

= Recall: Measures the proportion of true
positive predictions among all actual positives,
reflecting the model’s sensitivity in detecting ano-
malies.

= Fl-score: Combines precision and recall
into a single metric, particularly useful for imbal-
anced datasets.

= ROCAUC: Assesses the model’s effective-
ness in distinguishing between classes by calculating
the area under the receiver operating characteristic
(ROC) curve, independent of a specific threshold
value.

The performance of each model for the P300
speller across different techniques (ECPT, AS,
BTT, LDV, and SG) was analyzed and recorded
to determine the best classifier for each technique.
The evaluation demonstrated that the Random
Forest model yielded the highest estimated accuracy
of 1.00 for the ECPT dataset. Additionally, K-NN
shows remarkable precision scores of 0.49 and
0.52 for the AS and BTT datasets, respectively.
The findings for each technique and model were
presented in tables and visualized using bar charts
to facilitate comparison and identify the most
effective model for each vibration monitoring
technique.

Step VI. Visualization and Comparative
Analysis. To compare the performance metrics of
each model, bar plots and comparison charts were
created for the five vibration measurement
methods. These visualizations provided an intuitive
way to analyze the strengths and weaknesses of
each model, highlighting specific classifiers that
performed well or poorly in certain aspects.
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Insights gained from these comparisons were
applied to the evaluation of models and techniques
in actual CCPP processes.

4. Results and Discussion

4. 1. The Performance of Combining Machine
Learning Models with Vibration Measurement
Techniques

4.1.1. Combining Machine Learning Models
with ECPT Technique

From Figure 3, the Random Forest classifier
demonstrated exceptional performance on ECPT
data, achieving accuracy score of 1.00 for all
criteria. These results suggest that, among all
models analyzed, Random Forest is the most
effective for ECPT datasets, likely due to its ability
to capture complex vibration pattern fluctuations.

K-NN performed reasonably well, achieving an
accuracy of 0.47, but ensemble models, particularly
RF and GBM, outperformed it significantly.

4.1.2. Combining Machine Learning Models
with AS Technique

For AS data, Random Forest and GBM
achieved accuracy scores of 0.49 and 0.52,
respectively. K-NN also performed well, with an
accuracy of 0.49, making it a viable option in
scenarios where simpler models are preferred for
efficiency in terms of time and computational
resources. SVM, however, delivered the lowest
performance, with an accuracy of 0.48, indicating
its limitations in handling highly complex
accelerometer data. Figure 4 displays comparison
of the performance of different machine learning
models on AS data as a bar chart.

Performance Comparison for ECPT

Scores

accuracy precision

Model
B Random Forest
= GBM
. sVvM
. KNN

recall fl
Metrics

roc_auc

Figure 3. Comparison of the performance of different machine learning models on ECPT data
Source: byAl-T.W.K. Fahmi

Performance Comparison for AS
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Figure 4. Comparison of the performance of different machine learning models on AS data
Source: byAl-T.W.K. Fahmi
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4.1.3. Combining Machine Learning Models
with BTT Technique

From Figure 5, the K-NN classifier performed
surprisingly well on BTT data, achieving an accu-
racy of 0.52, which was comparable to Random
Forest and superior to SVM, which scored 0.48.

These results suggest that the distance-based
approach in K-NN is particularly effective when
data points are closely clustered, as seen in BTT
data. Random Forest and GBM also performed
well, with accuracy scores of 0.52 and 0.49,
respectively.

Performance Comparison for BTT

10

0.8 1

0.6

Scores

0.4

0.2 4

0.0-

accuracy precision

Model
B Random Forest

recall roc_auc
Metrics

Figure 5. Comparison of the performance of different machine learning models on BTT data
Source: byAl-T.W.K. Fahmi

4.1.4. Combining Machine Learning Models
with LDV Technique

LDV data posed challenges for all classifiers,
as none achieved an accuracy higher than
0.52. GBM and Random Forest performed
similarly, with accuracy scores of 0.48 and 0.44,
respectively. K-NN struggled with the dispersed

nature of the LDV data, yielding the lowest
accuracy (0.44). These findings suggest that more
sophisticated models or improved preprocessing
techniques may be required for effective LDV data
classification. The bar chart below, Figure 6
illustrates comparison of the performance of
different machine learning models on LDV data.

Performance Comparison for LDV
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Figure 6. Comparison of the performance of different machine learning models on LDV data
Source: byAl-T.W.K. Fahmi
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4.1.5. Combining Machine Learning Models
with SG Technique

From Figure 7, Random Forest and K-NN
produced comparable results, both achieving an
accuracy of 0.49. GBM followed closely with an

accuracy of 0.44, while SVM scored 0.48. These
findings indicate that simpler models like K-NN
can be effective for techniques such as SG, where
the data characteristics are relatively straightfor-
ward.

Performance Comparison for SG
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Figure 7. Comparison of the performance of different machine learning models on SG data
Source: byAl-T.W.K. Fahmi

4.2.Comparative Analysis Across All Techniques

A comparative analysis of all techniques
revealed that Random Forest consistently outper-
formed other models, particularly with ECPT data,
where it achieved a perfect classification score
across all metrics. K-NN, despite it’s simplicity,
performed well with AS and BTT data, demon-
strating its suitability in situations where com-
putational efficiency is crucial. GBM also exhibited

strong performance, especially for AS data, where
it achieved the highest accuracy (0.52) among the
ensemble methods. In contrast, SVM consistently
underperformed across all techniques, indicating
difficulties in handling complex vibration patterns
commonly found in CCPPs. Figure 8 compares the
performance of all machine learning models used
in this research with a combination of different
vibration measurement techniques.

Accuracy Comparison Across Models and Technigues

08

ECPT As

BTT v sG
niques

Figure 8. Consolidated bar chart to compare accuracy across all models and techniques
Source: byAl-T.W.K. Fahmi
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4.3. Key Observations and Insights

1. Model-Dependent Performance:

» Random Forest exhibited the strongest
overall performance, particularly with ECPT data,
due to its ensemble learning approach and ability
to recognize complex data patterns.

= K-NN produced competitive results, espe-
cially for techniques involving closely clustered
data points (e.g., AS and BTT), making it a viable
option for scenarios with limited computational
resources.

2. Technique-Dependent Model Suitability:

» The analysis confirmed that Random Forest
is the most suitable model for ECPT data, while
K-NN performed best for AS and BTT datasets.

» LDV data proved difficult for classification
due to its dispersed nature, suggesting that further
data preprocessing or more advanced classification
models could enhance performance.

3. Computational Efficiency vs. Accuracy:

» While Random Forest achieved the highest
accuracy, K-NN offers a balance between efficiency
and accuracy, making it suitable for simpler data
patterns such as AS and SG when computational
resources are limited.

The current study highlights that Random
Forest is the optimal classifier for detecting vibra-
tion anomalies in CCPPs, particularly when dealing
with complex data from ECPT and AS. However,
K-NN emerges as a resource-efficient alternative
for simpler datasets, performing effectively on
AS and BTT data. These findings emphasize the
importance of selecting the appropriate machine
learning model based on the nature of the vibration
data and the computational constraints of the
monitoring system.

Conclusion and Future Direction

This study evaluated the performance of four
machine learning classifiers — Random Forest
(RF), Gradient Boosting Machine (GBM), Support
Vector Machine (SVM), and K-Nearest Neighbors
(K-NN) — in classifying three groups of vibration
data (N, M, and L) for combined cycle power
plants (CCPPs). Various advanced sensors, includ-
ing Eddy Current Proximity Transducers (ECPT),

Accelerometer Sensors (AS), Blade Tip Timing
(BTT), Laser Doppler Vibrometers (LDV), and
Strain Gauges (SG), were used to generate syn-
thetic vibration data for fault diagnosis.

Among the classifiers, Random Forest demon-
strated the highest efficiency, achieving perfect
accuracy, precision, recall, Fl-score, and ROC
AUC (all equal to 1.00) when using ECPT data,
highlighting its robustness with large and diverse
features. While K-NN is less complex than SVM,
it still produced satisfactory results, particularly
with AS and BTT data, achieving accuracy scores
of 0.49 and 0.52, respectively. This suggests that
K-NN can be an effective choice when computa-
tional efficiency is a priority. In contrast, SVM
exhibited comparatively lower performance, indi-
cating its limitations in handling complex vibra-
tion data. Overall, the findings suggest that RF is
the most suitable model for analyzing complex
datasets, while K-NN provides a viable and
efficient alternative for simpler data structures.
Selectingthe appropriate machine learning model
and sensor technique is crucial for enhancing
predictive maintenance in CCPPs.

To further improve vibration analysis and
predictive maintenance in CCPPs, future research
should explore the following directions:

» Utilizing Real-World Data: Validate the
proposed models using actual vibration data from
CCPP environments to ensure durability and accu-
racy in real-world conditions.

= Developing Hybrid Models: Combine the
strengths of Random Forest and K-NN to develop
a hybrid model that optimizes both accuracy and
computational efficiency.

» Applying Edge Computing: Deploy light-
weight models, such as K-NN, on edge computing
devices for real-time vibration monitoring and
anomaly detection directly within CCPP systems.

By addressing these areas, future studies can
enhance the reliability, efficiency, and real-time
applicability of machine learning models in CCPP
vibration monitoring and predictive maintenance.
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