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Abstract. This study examines methodologies for detecting abnormalities in Combined Cycle 
Power Plants (CCPPs) through application of vibration signal analysis and machine learning 
algorithms. Models’ performances were evaluated using different key metrics. The results 
indicated that the Random Forest classifier, particularly in combination with ECPT data, 
exhibited superior performance, achieving perfect scores across all metrics. It highlights the 
robustness of the Random Forest algorithm when applied to ECPT data, making it the most 
effective approach for vibration anomaly detection. The K-NN classifier demonstrated 
satisfactory performance when applied to AS and BTT data, attaining accuracy scores of 0.49 
and 0.52, respectively; however, it exhibited limitations in handling diverse data distributions, 
as reflected in its lower accuracy of 0.44 with LDV data. Both GBM and SVM performed 
suboptimal, with GBM achieving a maximum accuracy of 0.52 with AS data, while SVM 
attained the highest accuracy of 0.49 with the same technique. Findings underscore the critical 
importance of selecting an appropriate combination of machine learning models and 
vibration measurement techniques to enhance the accuracy of anomaly detection. Eventually,
the Random Forest algorithm is well suited for complex datasets with varied patterns, 
while K-NN may serve as an efficient alternative for simpler, more uniform data. 

Keywords: Vibration data, Fault diagnosis, Machine learning classification, Condition 
monitoring, Combined cycle power plants, CCPP, Predictive maintenance 

Conflicts of interest 
The authors declare that there 
is no conflict of interest. 

Data Availability Statement: 
The datasets can be made 
available upon request 
from the authors. 

Authors’ contribution 
Fahmi A.T.W.K. — methodology, software, validation, writing-original draft preparation; Reza Kashyzadeh K. — methodology, 
formal analysis, investigation, writing-review and editing, supervision, project administration; Ghorbani S. — methodology, 
investigation, writing-original draft preparation; Kupreev S.A., Samusenko O.E. — writing and editing. All authors read and 
approved the final version of the article. 

For citation 
Fahmi ATWK, Reza Kashyzadeh K, Ghorbani S, Kupreev SA, Samusenko OE. Comparative performance of machine learning 
classifiers in detecting vibration anomalies in industrial power systems. RUDN Journal of Engineering Research. 2025;
26(3):273–287. http://doi.org/10.22363/2312-8143-2025-26-3-273-287 

1 © Fahmi A.T.W.K., Reza Kashyzadeh K., Ghorbani S., Kupreev S.A., Samusenko O.E., 2025 
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License 
https://creativecommons.org/licenses/by-nc/4.0/legalcode

https://orcid.org/0000-0002-2752-5750
https://orcid.org/0000-0003-0251-3144
https://orcid.org/0000-0002-8657-2282
https://orcid.org/0000-0002-8350-9384
https://orcid.org/0000-0003-0552-9950
https://orcid.org/0000-0003-0251-3144


Fahmi A.T.W.K., Reza Kashyzadeh K., Ghorbani S. RUDN Journal of Engineering Research. 2025;26(3):273–287 
 

 

274 

 

Сравнительная эффективность классификаторов 
машинного обучения при обнаружении аномалий вибрации 

в промышленных энергосистемах 

А.Т.В.Х. Фахми , К. Реза Каши Заде , С. Горбани , 
С.А. Купреев , О.Е. Самусенко  

Российский университет дружбы народов, Москва, Российская Федерация 
 reza-kashi-zade-ka@rudn.ru 

 

История статьи 
Поступила в редакцию: 13 марта 2025 г.
Доработана: 30 апреля 2025 г. 
Принята к публикации: 15 мая 2025 г. 

Аннотация. Изучены методологии обнаружения отклонений в электростан-
циях комбинированного цикла посредством применения анализа сигналов 
вибрации и алгоритмов машинного обучения. Результаты показали, что метод
случайного леса, особенно в сочетании с данными вихретоковых датчиков
приближения, продемонстрировал превосходную эффективность, достиг-
нув идеальных результатов по всем показателям. Это подчеркивает надеж-
ность алгоритма случайного леса при применении к данным вихретоковых 
датчиков приближения, что делает его наиболее эффективным подходом для 
обнаружения аномалий вибрации. Классификатор K-NN продемонстриро-
вал удовлетворительную эффективность при применении к данным датчи-
ков ускорения и датчики синхронизации кромки лопатки, достигнув показа-
телей точности 0,49 и 0,52 соответственно; однако он продемонстрировал 
ограничения при обработке различных распределений данных, что отражено 
в его более низкой точности 0,44 с данными лазерных доплеровских вибро-
метров. Машина для повышения градиента и метод опорных векторов пока-
зали неоптимальные результаты, причем машина для повышения градиента 
достигла максимальной точности 0,52 с данными датчиков ускорения, в то 
время как метод опорных векторов достиг наивысшей точности 0,49 с той 
же методикой. Результаты подчеркивают критическую важность выбора 
подходящей комбинации моделей машинного обучения и методов измере-
ния вибрации для повышения точности обнаружения аномалий. В итоге
алгоритм случайного леса хорошо подходит для сложных наборов данных
с разнообразными моделями, в то время как K-NN может служить эффек-
тивной альтернативой для более простых и однородных данных. 

Ключевые слова: данные о вибрации, диагностика неисправностей, клас-
сификация машинного обучения, мониторинг состояния, электростанции 
комбинированного цикла, CCPP, прогностическое обслуживание 
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Introduction 

Vibration analysis is a crucial aspect of con-
dition monitoring in industries that rely on rotating 
equipment, such as petrochemical plants and power 
plants. In CCPPs, which utilize both gas and steam 
turbines, continuous monitoring and evaluation 
of vibration signals are essential to ensuring 
reliability and efficiency in power generation. 
Vibration analysis serves as an effective method 
for detecting early signs of mechanical failures, 
such as rotary imbalance, coupling misalignment, 
and component wear, before they lead to costly 
downtime, reduced efficiency, or catastrophic 
equipment failure [1; 2]. In a CCPPs, vibration 
monitoring is particularly critical for primary 
energy-generating machinery, such as gas turbines, 
where even minor faults like speed fluctuations, 
excessive vibration, or timing irregularities, can 

result in significant efficiency losses, increased fuel 
consumption, and unplanned shutdowns, ultimately 
affecting overall plant performance [3; 4]. Figure 1 
presents various damages that occurred in the gas 
turbine of the Kirkuk power plant located in Iraq. 

Multiple factors contribute to vibrations in 
gas turbines and other rotating equipment. Common 
issues include shaft unbalance, critical speed 
occurrence, rubbing, and shorted turns off. Each 
of these problems can be detected using specialized 
vibration analysis techniques [5; 6]. For example, 
shaft unbalance, a leading cause of high-amplitude 
vibrations, adversely affects bearings, shafts, and 
other rotating components, leading to increased 
maintenance costs and reduced operational 
efficiency. Figure 2 shows bearing damage due to 
misalignment in a gas turbine of the Kirkuk power 
plant located in Iraq. 

 

         
a                                                                  b                                                                  c 

Figure 1.Gas turbine damages in the Kirkuk power plant due to the occurrence of vibrations caused by: 
a and b — steam flow fluctuations; c — rubbing 

S o u r c e: by Al�T.W.K. Fahmi 

 

              

Figure 2. Bearing damage due to the misalignment in a gas turbine of the Kirkuk power plant located in Iraq 
S o u r c e: by Al�T.W.K. Fahmi 
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Studies suggest that correcting unbalance and 
misalignment issues can greatly reduce power 
consumption in industrial machinery [7]. Similarly, 
critical speed resonance occurs when a machine 
operates at or near its natural frequency, causing 
excessive wear and potential failure. Preventative 
maintenance techniques, such as short-time Fourier 
transform (STFT), are often employed to detect 
critical speed issues during machine start-up and 
shutdown phases [8]. 

Various condition monitoring techniques are 
used to acquire the dynamic signatures of these 
mechanical defects. These include Eddy Current 
Proximity Transducers (ECPT), Accelerometer 
Sensors (AS), Blade Tip Timing (BTT), Laser 
Doppler Vibrometers (LDV), and Strain Gauges 
(SG), each offering unique advantages and 
limitations. ECPT, for instance, provides highly 
accurate displacement measurements for high-
speed equipment but requires time consuming 
calibration [9]. Accelerometers are versatile and 
capable of measuring a wide range of vibration 
frequencies, though they are susceptible to electro-
magnetic interference [10]. BTT is a non-intrusive 
technique that provides high-resolution data on 
blade vibrations, but it is limited to blade tip 
measurements [11]. LDV is a highly sensitive con-
tactless measurement method capable of detecting 
minute oscillations, though it requires sophisticated 
and costly equipment [12]. Finally, SGs are 
effective in measuring strain in structural com-
ponents but require precise calibration and are 
influenced by temperature variations [13]. 

Recent advancements in machine learning 
(ML) techniques have introduced powerful new 
approaches to vibration data analysis and faults in 
complex industrial systems diagnostics. ML models 
such as Random Forest (RF), Gradient Boosting 
Machine (GBM), Support Vector Machine (SVM), 
and K-Nearest Neighbors (K-NN) have been 
widely used for processing large datasets, detecting 
abnormal patterns, and classifying vibration signals 
[14]. RF, an ensemble-based decision tree classifier, 
is particularly effective in handling high-
dimensional and noisy data, making it well-suited 
for ECPT and AS datasets. GBM, another ensemble 

method, sequentially improves predictions by mini-
mizing errors and is particularly useful for structured 
datasets, such as those generated by accelero-
meters and strain gauges [15]. SVM, a strong binary 
classifier, excels at finding optimal hyperplanes 
for separating different vibration patterns, though 
its performance is highly dependent on data 
structure and dimensionality [16]. K-NN, a distance-
based classifier, operates under the assumption 
that a data point’s classification is determined by 
its nearest neighbors. Despite its simplicity, K-NN 
performs well when dealing with densely clustered 
vibration data, such as those obtained from high-
frequency techniques [17]. Its straightforward im-
plementation and low computational requirements 
make it particularly useful for real-time industrial 
applications where processing power is limited. 
Given its efficiency, K-NN serves as a useful 
benchmark for comparing more complex models 
in vibration classification. 

This study aims to evaluate and compare the 
effectiveness of RF, GBM, SVM, and K-NN 
classifiers in analyzing synthetic vibration data 
generated from five monitoring techniques: ECPT, 
AS, BTT, LDV, and SG. The synthetic data were 
designed to simulate real-world conditions by 
varying key parameters such as vibration 
frequency, amplitude, and noise levels, allowing 
for comprehensive testing across multiple ope-
rational scenarios. To enhance model performance, 
preprocessing techniques such as data labeling 
(normal vs. abnormal) and outlier removal were 
applied. The performance of each classifier was 
assessed using standard evaluation metrics, 
including accuracy, precision, recall, F1-score, and 
the area under the receiver operating characteristic 
(ROC AUC) curve. 

This study is guided by the following research 
questions: 

1. Which machine learning classifier demon-
strates the highest accuracy in detecting vibration 
anomalies across different monitoring techniques? 

2. How do variations in vibration measure-
ment techniques impact classifier performance? 

3. Can a specific combination of machine 
learning models and monitoring techniques opti-
mize vibration anomaly detection in CCPPs? 
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By addressing these questions, this research 
seeks to provide valuable insights into the integra-
tion of machine learning with traditional vibration 
analysis techniques, ultimately contributing to more 
efficient and predictive maintenance strategies in 
industrial settings [18]. 

1. A brief Description of the Most Important 
Vibration Measurement Techniques 
in Industry 

The following is a brief description of the 
mechanism of the techniques used in this research 
to measure vibration in a gas turbine: 

1.1. Eddy Current Proximity Transducers (ECPT)  

ECPTs are widely used in power plants, par-
ticularly for monitoring the movement of the rotat-
ing machinery by detecting changes in proximity 
to an electromagnetic field. These sensors are 
preferred in high-speed applications and testing 
environments due to their reliability. 

Research indicates that ECPTs can measure 
even the smallest displacement changes, making 
them suitable for tracking critical components 
such as turbine shafts and bearings [12]. However, 
ECPTs have some limitations: they can only sense 
movement in one direction, their calibration pro-
cess is highly sensitive, time-consuming, and 
requires specialized equipment [19]. 

1.2. Accelerometer Sensors (AS) 

Accelerometers are commonly used for vibra-
tion monitoring due to their high versatility and 
responsiveness across a wide frequency range. 
They operate based on a mass-spring system, 
generating an electrical signal proportional to 
acceleration, which is then analyzed to assess 
vibration characteristics. These devices are widely 
applied in power plants, particularly for monitoring 
turbines and evaluating structural integrity1. 

 
1 Accelerometer specifications: deciphering an accelerometer’s datasheet. Available from: https://www.scribd.com/ 

document/650160365/Accelerometer-Specifications-Deciphering-an-Accelerometer-s-Datasheet (accessed: 01.03.2025). 
2 Most Common Myths about Accelerometers and Frequency Range. Available from: https://adash.com/articles/myths-

accelerometers-frequency-range/ (accessed: 01.03.2025). 

However, accelerometers are susceptible to external 
vibrations and electromagnetic noise, which can 
reduce measurement accuracy and necessitate 
frequent recalibration2. 

1.3. Blade Tip Timing (BTT) 

BTT is an intrusive method commonly used 
to detect turbine blade vibrations in combined 
cycle power plants (CCPPs). It employs optical or 
microwave sensors placed around the rotor to 
detect the timing of blade tip passages. Research 
has shown that BTT can identify both high- and 
low-frequency vibrations without requiring any 
modifications to the turbine [11]. For example, 
Zhang et al. developed a microwave-based BTT 
system in which a patch antenna probe transmits 
and receives microwave signals reflected from the 
turbine blades, providing highly accurate measure-
ments of blade dynamics [17]. 

1.4. Laser Doppler Vibrometers (LDV) 

Laser Doppler Vibrometers (LDVs) are a con-
tactless and a highly accurate method for measuring 
small vibrations using laser beams. They operate 
by detecting variations in the frequency of laser 
light reflected from a vibrating surface, enabling 
real-time observation of rotating equipment. A key 
advantage of LDVs is their high sensitivity and 
accuracy, making them suitable for detecting even 
the smallest vibrations [20]. However, their high 
cost and the complex structures required for 
implementing control algorithms may limit their 
use in large-scale industrial applications. Recent 
studies have aimed to improve the applicability of 
LDVs by enhancing signal detection for both low-
frequency and high-frequency vibrations [21].  

1.5. Strain Gauges (SG) 

Strain gauges record distortions caused by 
strain or vibration by measuring variations in the 
electrical resistance of a small metal strip bonded 
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to a structure. They are particularly useful for moni-
toring large frameworks and support structures in 
power plants, as well as detecting structural dis-
tortions over time [13]. However, strain gauges 
typically have a low measurement range and can 
be affectedby temperature changes. Therefore, 
these sensors require precise calibration for accu-
rate strain measurements. Recent developments in 
strain gauge technology aim to improve tempera-
ture compensation and enhance accuracy in harsh 
environments, making them more reliable for 
structural health monitoring throughout a struc-
ture’s lifecycle3. 

2. Machine Learning Algorithms 
in Vibration Analysis 

Machine learning methodologies have signi-
ficantly improved the diagnosis and prediction of 
vibrations in complex industrial systems. Many 
studies highlight the advantages of using machine 
learning for fault detection, particularly in CCPPs, 
where early signs of equipment degradation can 
greatly impact plant reliability. The following is 
a brief description of the machine learning algo-
rithms used in this research for the purpose of 
vibration analysis: 

2.1. Random Forest (RF) 

Random Forest is a widely used ensemble 
learning model known for its stability and ability 
to handle large numbers of features in vibration 
signal classification. It constructs multiple decision 
trees during training and integrates their results 
to improve classification efficiency. Previous 
research has demonstrated that the Random Forest 
algorithm performs well in detecting abnormal 
patterns from ECPT and accelerometer sensor data 
due to its low susceptibility to overfitting and its 
strong interpretability in large datasets with many 
variables. For example, one study showed that an 
RF model trained with synthetic vibration data for 
ECPT achieved 100% accuracy in exact measure-
ment [14]. 

 
3 Characteristics of a Strain Gauge Sensor. Bestech Australia. Available from: https://www.bestech.com.au/blogs/ 

characteristics-of-a-strain-gauge-sensor/ (accessed: 01.03.2025). 

2.2. Gradient Boosting Machine (GBM) 

GBM is an ensemble learning method com-
posed of sequentially assembled decision trees, 
focusing on error minimization at each stage. This 
makes it particularly effective for the discrete 
datasets commonly used in vibration analysis. 
As misclassified cases are iteratively added to 
improve the model, GBM enhances its ability to 
identify minute patterns, such as those seen in 
accelerometer and strain gauge data. Studies have 
shown that GBM efficiently uncovers relation-
ships within data and improves outlier detection by 
refining weak learners at each iteration step. In one 
study, GBM achieved an accuracy of 0.52 on AS 
data, demonstrating its effectiveness in classifying 
structured sensor data. 

2.3. Support Vector Machine (SVM) 

SVM is a well-known classification algo-
rithm that selects the optimal hyperplane to separate 
data points. It is particularly effective in cases where 
binary classification is essential. Research has 
shown that SVM performs well in detecting 
vibration abnormalities, especially when using 
accelerometer and blade tip timing (BTT) data 
[22]. However, its performance dependents on the 
dataset structure and its time complexity increases 
with large datasets, which can hinder real-time 
applications in certain CCPP scenarios [16]. 

2.4. K&Nearest Neighbors (K&NN) 

K-NN is a simple, instance-based learning 
model that classifies data points based on their 
similarity to neighboring data. Its simplicity makes 
it an ideal choice in scenarios where computational 
resources are limited, but fast classification is 
required. Studies indicate that K-NN performs well 
in density-based functions, such as accelerometer 
analysis and blade tip timing data, particularly 
when dealing with closely grouped datasets [18]. 
In one study, K-NN achieved accuracy rates of 
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0.49 and 0.52 for AS and BTT data accordingly, 
respectively, highlighting its effectiveness as a 
lightweight, distance-based classifier in specific 
vibration monitoring scenarios [19]. 

Previous research confirms that combining 
vibration measurement techniques with fault 
classification algorithms significantly enhances 
fault diagnosis in CCPPs. Highly sensitive methods, 
such as ECPT and accelerometers, and precise 
non-contact methods, such as BTT and LDV, 
provide reliable data for analysis. The use of 
machine learning models — particularly ensemble 
methods like RF and GBM — has improved 
classification accuracy in vibration monitoring. 
While basic algorithms like K-NN are useful in 
limited contexts, real-time anomaly detection often 
requires balancing simplicity with execution speed. 
This review provides the foundation for the com-
parative analysis conducted in this study, empha-
sizing the importance of selecting appropriate 
machine learning models and sensor techniques 
based on the specific needs of CCPP vibration 
monitoring. 

3. Methodology and Its Implementation 

The methodology of this study consists of 
synthetic data generation, data preprocessing, 
machine learning model training, and performance 
evaluation. Each step is systematically designed to 
evaluate the effectiveness of various vibration 
signals analysis methods used in CCPPs for 
monitoring and classifying abnormalities. 

S t e p  I .  Synthetic Data Generation 
To simulate real-world vibration monitoring 

scenarios, synthetic vibration data was generated 
for five commonly used techniques: Eddy Current 
Proximity Transducers (ECPT), Accelerometer 
Sensors (AS), Blade Tip Timing (BTT), Laser 
Doppler Vibrometers (LDV), and Strain Gauges 
(SG). The data for each technique was modeled 
with varying assumptions regarding frequency, 
amplitude, and noise level to better represent the 
operating conditions of CCPP systems. 

The synthetic data generation process is as 
follows: 

 Frequency (Hz): Represents the average 
number of times per week that each technique is 
used. For instance, ECPT was modeled with a fre-
quency of 1,000,000 Hz, while BTT was set at 100 Hz 
to reflect their distinct operational characteristics. 

 Amplitude: Corresponds to the vibration 
signal strength, set to approximate real-world 
values. For example, ECPT was assigned an am-
plitude of 100, while LDV was set at 2.5. 

 Noise Level: Gaussian noise was added to 
the data to simulate environmental interference. 
For instance, a noise level of 1.0 was applied to 
ECPT data, whereas SG data had a noise level of 
0.5, reflecting different levels of noise tolerance 
across techniques. 

The generated dataset included labeled data 
for each technique, where a subset was designated 
as ‘normal’ and the rest as ‘abnormal’ to maintain 
a binary classification approach. Due to the L and 
N nature of the synthetic data, testing, and 
evaluation of the model become flexible without 
negative influence from real data conditions. 

S t e p  I I .  Data Preprocessing 
To ensure the quality and suitability of the 

generated dataset for machine learning analysis, 
data preprocessing was performed. This process 
involved two key steps: 

 Labeling: Each dataset was categorized as 
“normal” or “abnormal” to establish a binary clas-
sification problem. The “normal” label represents 
typical operational behavior, while the “abnormal” 
label indicates deviations from expected behavior 
that could signal faults or potential issues in CCPP 
machinery. 

 Outlier Removal and Clipping: Outliers 
were identified and clipped within a specified am-
plitude range (e.g., between –3 and 3) to improve 
model training accuracy. This step minimizes the 
impact of extreme values and enhances the robust-
ness of classifiers by focusing the model on more 
typical operating conditions. 

After preprocessing, the data was split into 
training (80%) and testing (20%) sets to ensure 
a reliable and balanced evaluation of model per-
formance. 



Fahmi A.T.W.K. et al. RUDN Journal of Engineering Research. 2025;26(3):273–287 
 

 

280 

S t e p  I I I .  Machine Learning Models 
Four classifiers were selected for model 

training, testing, and feature selection, each chosen 
for its ability to handle high-dimensional data and 
diverse feature patterns. The selected models include 
Random Forest (RF), Gradient Boosting Machine 
(GBM), Support Vector Machine (SVM), and 
K-Nearest Neighbors (K-NN). The selection aimed 
to compare different classifier types, including en-
semble, distance-based, and linear models. 

 Random Forest (RF): A machine learning 
technique that constructs multiple decision trees 
and aggregates their outputs to improve the final 
prediction. RF is highly effective for handling high-
dimensional and noisy data, making it particularly 
suitable for analyzing complex vibration patterns 
recorded in ECPT and AS data. To balance 
accuracy and prevent overfitting, the RF model 
was trained with 100 trees and a maximum depth 
of 10. The details of the algorithm are as follows: 

 
Algor i thm 1 .  Anomaly Detection with Random Forest (RF) 

1: Input: Vibration monitoring dataset X with features and labels, 

where X is split into training and test sets. 

2: Output: Trained Random Forest model, Anomaly classifi-

cation results. 

3: ProcedureTRAIN_RF_MODEL(X) 
4: Preprocess dataset X (normalization and missing value 

handling). 

5: Train the Random Forest model using the training set. 

6: Evaluate the model on the test set. 

7: Generate accuracy and classification reports. 

8: Save the trained model for anomaly detection. 

9: End Procedure 

 
 Gradient Boosting Machine (GBM): A ma-

chine learning method for constructing an ensemble 
by training a series of models sequentially while 
minimizing generalization error. GBM was chosen 
because it is well suited for structured data such as 
the vibrations from AS and SG. Specifically, for 
the GBM model, the learning rate was set to 0.1, 
and the maximum depth was set to 5 to achieve 
optimal evaluation results while minimizing com-
putational time. The details of the algorithm are 
as follows: 

Algorithm 2. Anomaly Detection with Gradient Boosting 
Machine (GBM) 

1: Input: Vibration monitoring dataset X with features and 

labels, where X is split into training and test sets. 

2: Output: Trained GBM model, Anomaly classification results. 

3: ProcedureTRAIN_GBM_MODEL(X) 
4: Preprocess dataset X (feature scaling and outlier removal). 

5: Initialize GBM with chosen hyper parameters. 

6: Train the GBM model using the training set. 

7: Validate performance on the test set. 

8: Generate precision and recall metrics. 

9: Save the trained model for anomaly detection. 

10: End Procedure 

 
 Support Vector Machine (SVM): A powerful 

binary classification algorithm that identifies the 
optimal hyperplane for separating classes, making 
it ideal for datasets with well-defined boundaries. 
SVM was applied to analyze the BTT and LDV 
datasets due to its strong performance in binary 
classification tasks. A linear kernel was chosen 
after initial experiments indicated that it provided 
the best balance between speed and accuracy. The 
details of the algorithm are as follows: 

 
Algorithm 3. Anomaly Detection with Support Vector Machine 
(SVM) 

1: Input: Vibration monitoring dataset X with features and labels, 
where X is split into training and test sets. 
2: Output: Trained SVM model, Anomaly classification results. 
3: ProcedureTRAIN_SVM_MODEL(X) 
4: Standardize dataset X (scale features to have zero mean and 
unit variance). 
5: Choose the appropriate kernel type (e.g., linear, radial basis 
function (RBF)) based on dataset characteristics. 
6: Train the SVM model using the training set, optimizing for 
the margin that separates data points. 
7: Validate model performance on the test set using accuracy, 
precision, and recall. 
8: Tune hyper parameters (e.g., C, gamma) to improve per-
formance if necessary. 
9: Save the trained SVM model for anomaly detection. 

10: End Procedure 

 
 K-Nearest Neighbors (K-NN): A distance-

based classifier that assigns labels to data points 
based on the majority label of their nearest neigh-
bors, providing simplicity and interpretability. 
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K-NN was particularly effective for datasets with 
densely clustered points, such as AS and BTT. The 
model was implemented with n_neighbors=5, 
as this configuration was found to optimize clas-
sification accuracy while minimizing computational 
load. The details of the algorithm are as follows: 

 
Algorithm 4. Anomaly Detection with K Nearest Neighbors 
(K-NN) 

1: Input: Vibration monitoring dataset X with features and labels, 
where X is split into training and test sets. 
2: Output: Trained K-NN model, Anomaly classification results. 
3: ProcedureTRAIN_KNN_MODEL(X) 
4: Standardize dataset X (normalize features to a common 
scale). 
5: Choose the value of K based on cross-validation. 
6: Train K-NN model on the training set. 
7: Evaluate K-NN model accuracy on the test set. 
8: Compute F1-score and confusion matrix. 
9: Save trained model for anomaly detection. 

10: End Procedure 

 
Each model was trained on the preprocessed 

synthetic data to distinguish between “normal” and 
“abnormal” vibration patterns. Model parameters 
were fine-tuned to optimize performance based on 
the characteristics of each technique’s dataset. 

S t e p  I V.  Model Training and Testing 
For each machine learning model employed, 

training and testing were conducted on the synthetic 
dataset to evaluate its performance in classifying 
vibration anomalies. The training process for each 
model followed these steps: 

 Train-Test Split: The dataset for each 
technique was divided into 80% for training and 
20% for testing.  

 Model Training: Each model was trained 
on the labelled training dataset. For some models, 
such as K-NN and GBM, hyper parameters (e.g., 
the number of neighbors and learning rate) were 
adjusted based on initial training and validation 
results. 

 Prediction and Evaluation: After training, 
each model was evaluated on the reserved test set. 
Predictions were made for all test samples, and the 
predicted labels were compared to the actual class 
labels to assess performance. 

S t e p  V.  Performance Evaluation Metrics 
To comprehensively evaluate the performance 

of each classifier, multiple metrics were used to 
provide a well-rounded assessment of each model’s 
effectiveness: 

 Accuracy: Measures the percentage of 
correct predictions, indicating the overall effective-
ness of the model in classifying normal and ab-
normal patterns. 

 Precision: Evaluates the proportion of true 
positive predictions among all positive predictions, 
assessing the model’s ability to minimize false 
positives. 

 Recall: Measures the proportion of true 
positive predictions among all actual positives, 
reflecting the model’s sensitivity in detecting ano-
malies. 

 F1-score: Combines precision and recall 
into a single metric, particularly useful for imbal-
anced datasets. 

 ROC AUC: Assesses the model’s effective-
ness in distinguishing between classes by calculating 
the area under the receiver operating characteristic 
(ROC) curve, independent of a specific threshold 
value. 

The performance of each model for the P300 
speller across different techniques (ECPT, AS, 
BTT, LDV, and SG) was analyzed and recorded 
to determine the best classifier for each technique. 
The evaluation demonstrated that the Random 
Forest model yielded the highest estimated accuracy 
of 1.00 for the ECPT dataset. Additionally, K-NN 
shows remarkable precision scores of 0.49 and 
0.52 for the AS and BTT datasets, respectively. 
The findings for each technique and model were 
presented in tables and visualized using bar charts 
to facilitate comparison and identify the most 
effective model for each vibration monitoring 
technique. 

S t e p  V I .  Visualization and Comparative 
Analysis. To compare the performance metrics of 
each model, bar plots and comparison charts were 
created for the five vibration measurement 
methods. These visualizations provided an intuitive 
way to analyze the strengths and weaknesses of 
each model, highlighting specific classifiers that 
performed well or poorly in certain aspects. 



Fahmi A.T.W.K. et al. RUDN Journal of Engineering Research. 2025;26(3):273–287 
 

 

282 

Insights gained from these comparisons were 
applied to the evaluation of models and techniques 
in actual CCPP processes. 

4. Results and Discussion 

4.1. The Performance of Combining Machine 
Learning Models with Vibration Measurement 
Techniques 

4.1.1. Combining Machine Learning Models 
with ECPT Technique 

From Figure 3, the Random Forest classifier 
demonstrated exceptional performance on ECPT 
data, achieving accuracy score of 1.00 for all 
criteria. These results suggest that, among all 
models analyzed, Random Forest is the most 
effective for ECPT datasets, likely due to its ability 
to capture complex vibration pattern fluctuations. 

K-NN performed reasonably well, achieving an 
accuracy of 0.47, but ensemble models, particularly 
RF and GBM, outperformed it significantly. 

4.1.2. Combining Machine Learning Models 
with AS Technique 

For AS data, Random Forest and GBM 
achieved accuracy scores of 0.49 and 0.52, 
respectively. K-NN also performed well, with an 
accuracy of 0.49, making it a viable option in 
scenarios where simpler models are preferred for 
efficiency in terms of time and computational 
resources. SVM, however, delivered the lowest 
performance, with an accuracy of 0.48, indicating 
its limitations in handling highly complex 
accelerometer data. Figure 4 displays comparison 
of the performance of different machine learning 
models on AS data as a bar chart. 

 

 
Figure 3. Comparison of the performance of different machine learning models on ECPT data 

S o u r c e: by Al�T.W.K. Fahmi 

 

 
Figure 4. Comparison of the performance of different machine learning models on AS data 

S o u r c e: by Al�T.W.K. Fahmi 
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4.1.3. Combining Machine Learning Models 
with BTT Technique 

From Figure 5, the K-NN classifier performed 
surprisingly well on BTT data, achieving an accu-
racy of 0.52, which was comparable to Random 
Forest and superior to SVM, which scored 0.48. 

These results suggest that the distance-based 
approach in K-NN is particularly effective when 
data points are closely clustered, as seen in BTT 
data. Random Forest and GBM also performed 
well, with accuracy scores of 0.52 and 0.49, 
respectively. 

 

 
Figure 5. Comparison of the performance of different machine learning models on BTT data 

S o u r c e: by Al�T.W.K. Fahmi 

 
4.1.4. Combining Machine Learning Models 
with LDV Technique 

LDV data posed challenges for all classifiers, 
as none achieved an accuracy higher than 
0.52. GBM and Random Forest performed 
similarly, with accuracy scores of 0.48 and 0.44, 
respectively. K-NN struggled with the dispersed 

nature of the LDV data, yielding the lowest 
accuracy (0.44). These findings suggest that more 
sophisticated models or improved preprocessing 
techniques may be required for effective LDV data 
classification. The bar chart below, Figure 6 
illustrates comparison of the performance of 
different machine learning models on LDV data. 

 

 
Figure 6. Comparison of the performance of different machine learning models on LDV data 

S o u r c e: by Al�T.W.K. Fahmi 
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4.1.5. Combining Machine Learning Models 
with SG Technique 

From Figure 7, Random Forest and K-NN 
produced comparable results, both achieving an 
accuracy of 0.49. GBM followed closely with an 

accuracy of 0.44, while SVM scored 0.48. These 
findings indicate that simpler models like K-NN 
can be effective for techniques such as SG, where 
the data characteristics are relatively straightfor-
ward.

 

 
Figure 7. Comparison of the performance of different machine learning models on SG data 

S o u r c e: by Al�T.W.K. Fahmi 

 
4.2.Comparative Analysis Across All Techniques 

A comparative analysis of all techniques 
revealed that Random Forest consistently outper-
formed other models, particularly with ECPT data, 
where it achieved a perfect classification score 
across all metrics. K-NN, despite it’s simplicity, 
performed well with AS and BTT data, demon-
strating its suitability in situations where com-
putational efficiency is crucial. GBM also exhibited 

strong performance, especially for AS data, where 
it achieved the highest accuracy (0.52) among the 
ensemble methods. In contrast, SVM consistently 
underperformed across all techniques, indicating 
difficulties in handling complex vibration patterns 
commonly found in CCPPs. Figure 8 compares the 
performance of all machine learning models used 
in this research with a combination of different 
vibration measurement techniques.

 

 
Figure 8. Consolidated bar chart to compare accuracy across all models and techniques 

S o u r c e: by Al�T.W.K. Fahmi 
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4.3. Key Observations and Insights 

1. Model-Dependent Performance: 
 Random Forest exhibited the strongest 

overall performance, particularly with ECPT data, 
due to its ensemble learning approach and ability 
to recognize complex data patterns.  

 K-NN produced competitive results, espe-
cially for techniques involving closely clustered 
data points (e.g., AS and BTT), making it a viable 
option for scenarios with limited computational 
resources. 

2. Technique-Dependent Model Suitability: 
 The analysis confirmed that Random Forest 

is the most suitable model for ECPT data, while 
K-NN performed best for AS and BTT datasets. 

 LDV data proved difficult for classification 
due to its dispersed nature, suggesting that further 
data preprocessing or more advanced classification 
models could enhance performance. 

3. Computational Efficiency vs. Accuracy: 
 While Random Forest achieved the highest 

accuracy, K-NN offers a balance between efficiency 
and accuracy, making it suitable for simpler data 
patterns such as AS and SG when computational 
resources are limited. 

The current study highlights that Random 
Forest is the optimal classifier for detecting vibra-
tion anomalies in CCPPs, particularly when dealing 
with complex data from ECPT and AS. However, 
K-NN emerges as a resource-efficient alternative 
for simpler datasets, performing effectively on 
AS and BTT data. These findings emphasize the 
importance of selecting the appropriate machine 
learning model based on the nature of the vibration 
data and the computational constraints of the 
monitoring system. 

Conclusion and Future Direction 

This study evaluated the performance of four 
machine learning classifiers — Random Forest 
(RF), Gradient Boosting Machine (GBM), Support 
Vector Machine (SVM), and K-Nearest Neighbors 
(K-NN) — in classifying three groups of vibration 
data (N, M, and L) for combined cycle power 
plants (CCPPs). Various advanced sensors, includ-
ing Eddy Current Proximity Transducers (ECPT), 

Accelerometer Sensors (AS), Blade Tip Timing 
(BTT), Laser Doppler Vibrometers (LDV), and 
Strain Gauges (SG), were used to generate syn-
thetic vibration data for fault diagnosis.  

Among the classifiers, Random Forest demon-
strated the highest efficiency, achieving perfect 
accuracy, precision, recall, F1-score, and ROC 
AUC (all equal to 1.00) when using ECPT data, 
highlighting its robustness with large and diverse 
features. While K-NN is less complex than SVM, 
it still produced satisfactory results, particularly 
with AS and BTT data, achieving accuracy scores 
of 0.49 and 0.52, respectively. This suggests that 
K-NN can be an effective choice when computa-
tional efficiency is a priority. In contrast, SVM 
exhibited comparatively lower performance, indi-
cating its limitations in handling complex vibra-
tion data. Overall, the findings suggest that RF is 
the most suitable model for analyzing complex 
datasets, while K-NN provides a viable and 
efficient alternative for simpler data structures. 
Selectingthe appropriate machine learning model 
and sensor technique is crucial for enhancing 
predictive maintenance in CCPPs. 

To further improve vibration analysis and 
predictive maintenance in CCPPs, future research 
should explore the following directions: 

 Utilizing Real-World Data: Validate the 
proposed models using actual vibration data from 
CCPP environments to ensure durability and accu-
racy in real-world conditions. 

 Developing Hybrid Models: Combine the 
strengths of Random Forest and K-NN to develop 
a hybrid model that optimizes both accuracy and 
computational efficiency. 

 Applying Edge Computing: Deploy light-
weight models, such as K-NN, on edge computing 
devices for real-time vibration monitoring and 
anomaly detection directly within CCPP systems. 

By addressing these areas, future studies can 
enhance the reliability, efficiency, and real-time 
applicability of machine learning models in CCPP 
vibration monitoring and predictive maintenance. 
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