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Abstract. Breast cancer remains one of the leading causes of morbidity and mortality among 
women worldwide. Despite the global emphasis on early detection, breast cancer continues
to pose a significant public health challenge. The object of this study is to predict the breast 
cancer risk using various machine-learning approaches based on demographic, laboratory,
and mammographic data. It employed a quantitative research design to assess the potential
of machine learning (ML) in predicting breast cancer. It integrated supervised ML algorithms, 
including Support Vector Machines (SVM), Decision Trees, Random Forests, and Deep 
Learning models, to evaluate their accuracy, efficiency, and applicability in medical 
diagnostics. The dataset revealed significant variability in tumor features such as mean radius, 
mean texture, mean perimeter, and mean area. The target variable demonstrated a class 
imbalance, with 62% benign and 38% malignant cases. Among the evaluated models, Random 
Forest outperformed others with the highest accuracy, precision, recall, F1-score, and ROC-
AUC, indicating superior predictive capability. The Logistic Regression and Support Vector 
Machine models showed competitive performance, particularly in precision and recall, while 
the Decision Tree model exhibited the lowest overall performance across metrics. 
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Аннотация. Рак молочной железы остается одной из основных причин 
заболеваемости и смертности среди женщин во всем мире. Несмотря на 
значительные усилия, направленные на раннее выявление болезни, рак 
молочной железы по-прежнему представляет собой серьезную проблему 
для здоровья населения. Цель исследования — прогнозирование риска 
рака молочной железы с использованием различных подходов машинного 
обучения, основанных на демографических, лабораторных и маммографи-
ческих данных. Использована модель количественных оценок методов 
машинного обучения в прогнозировании рака молочной железы. Модель
интегрирует алгоритмы машинного обучения, включая метод опорных 
векторов, деревья решений, случайные леса и модели глубокого обучения, 
для оценки их точности, эффективности и применимости в медицинской 
диагностике. Набор данных выявил значительную изменчивость в пара-
метрах опухоли, таких как средний радиус, средняя текстура, средний 
периметр и средняя площадь. Целевая переменная продемонстрировала 
дисбаланс классов, с 62 % доброкачественных и 38 % злокачественных 
случаев. Среди оцененных моделей Random Forest превзошла другие по 
наибольшей точности, чувствительности, полноте, F1-мере и площади под 
кривой операционных характеристик, указывая на наилучшую способ-
ность прогнозирования. Модели логистической регрессии и метода опор-
ных векторов показали конкурентоспособность, особенно почувствитель-
ности и полноте, в то время как модель дерева решений продемонстриро-
вала самую низкую общую эффективность по всем показателям. 

Ключевые слова: ранняя диагностика, общественное здравоохранение, 
опухоль, маммография, медицинская диагностика, алгоритмы машинного
обучения 
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Introduction 

Breast cancer remains one of the leading 
causes of morbidity and mortality among women 
worldwide. In 2020, an estimated 2.3 million 

 
1 WHO. Breast cancer: Early diagnosis and screening. Geneva: World Health Organization. 2021. 

women were diagnosed with breast cancer, making 
it the most prevalent cancer globally1. 

Despite advancements in medical techno-
logies, early detection remains a critical challenge, 
as many cases are identified at advanced stages, 
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particularly in low-resource settings. This delay 
often leads to higher mortality rates, with breast 
cancer accounting for approximately 685 000 
deaths in 2020 alone2. The increasing burden 
of breast cancer underscores the need for inno- 
vative diagnostic solutions that can enhance early 
detection and improve survival rates. 

Traditional diagnostic methods, such as 
mammography, clinical breast exams, and bio- 
psies, play a pivotal role in detecting breast cancer. 
However, these approaches are often limited by 
human error, accessibility challenges, and high 
costs, particularly in low-and middle-income 
countries (LMICs). Studies have shown that mam- 
mography, while effective, has sensitivity rates 
ranging from 77 to 95% depending on patient 
age and breast density [1]. Furthermore, false 
positives and negatives can lead to unnecessary 
procedures or missed diagnoses, emphasizing the 
need for more accurate and efficient diagnostic 
systems. 

In recent years, machine learning (ML) has 
emerged as a transformative tool in the medical 
field, offering promising solutions for breast cancer 
prediction. ML models, leveraging large datasets 
and advanced algorithms, have demonstrated 
superior performance in identifying early-stage 
cancers. For instance, deep learning models have 
achieved diagnostic accuracy rates of over 95% in 
distinguishing malignant from benign lesions [2]. 
By integrating ML into breast cancer diagnostics, 
healthcare systems have the potential to overcome 
existing barriers, improve early detection, and 
ultimately reduce global mortality rates. 

By focusing on breast cancer, this article aims 
to develop a machine learning model capable of 
predicting breast cancer risk with high accuracy. 

1. Background 

Despite the global emphasis on early detec- 
tion, breast cancer continues to pose a significant 
public health challenge. Traditional diagnostic 
methods, while valuable, are often constrained 

 
2 Globocan. Global cancer statistics 2020. International Agency for Research on Cancer (IARC). 2020. 
3 WHO. Breast cancer: Early diagnosis and screening. Geneva: World Health Organization. 2021. 

by factors such as high costs, limited access in 
LMICs, and variability in interpretation by radio- 
logists. These challenges contribute to delayed 
diagnoses, with up to 60% of breast cancer cases 
in developing countries detected at advanced 
stages3. This disparity highlights an urgent need 
for innovative approaches that are both accurate 
and accessible. 

Machine learning has shown remarkable po- 
tential in transforming breast cancer diagnostics, 
yet its adoption faces significant barriers. Although 
ML models have demonstrated diagnostic accuracy 
rates exceeding those of traditional methods, 
their integration into healthcare systems remains 
limited. A lack of resources, technical expertise, and 
standardized implementation strategies impedes 
the use of ML, particularly in resource-constrained 
settings [3]. Furthermore, concerns about algo-
rithmic bias and the reliability of AI-driven 
diagnostics contribute to skepticism among health- 
care providers. 

Given these challenges, the global healthcare 
community must address the gap between techno- 
logical advancements and their practical application 
in breast cancer prediction. This study seeks to 
explore the potential of ML in overcoming these 
barriers, focusing on its accuracy, cost-effective- 
ness, and ability to improve early detection rates. 
By addressing these issues, the paper aims to 
contribute to the broader goal of reducing breast 
cancer mortality and enhancing healthcare out- 
comes worldwide. 

Breast cancer prediction focuses on identi- 
fying individuals with the risk of the disease 
development or distinguishing between benign 
and malignant cases. Early and accurate prediction 
significantly improves treatment outcomes, as it 
allows for timely interventions and better manage- 
ment strategies [4]. The predictive process involves 
evaluating various factors, including genetic pre- 
dispositions, lifestyle behaviors, and clinical 
markers, to assess the likelihood of developing 
breast cancer. For instance, mutations in the BRCA1 
and BRCA2 genes are well-documented predictors 
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of breast cancer risk, accounting for 5–10% of 
hereditary cases [5]. 

Additionally, predictive models often rely on 
epidemiological data, which include variables such 
as age, family history, and reproductive factors. 
However, these models can be limited by the 
complexity of cancer development, which involves 
interactions between genetic, environmental, and 
hormonal factors [6]. The integration of bio- 
markers, such as hormone receptor status (e.g., 
HER2, estrogen, and progesterone receptors), has 
enhanced prediction accuracy, but the reliance on 
laboratory-based tests creates barriers in resource-
limited settings. Сonsequently, there is a growing 
emphasis on developing advanced and accessible 
predictive techniques. 

The global rise in breast cancer incidence, 
with 2.3 million new cases reported in 2020, 
underscores the need for innovative prediction 
methods. Emerging technologies like artificial 
intelligence (AI) and machine learning are being 
increasingly explored to bridge the gaps in pre-
diction accuracy and accessibility, particularly in 
LMICs. By leveraging large datasets and compu-
tational power, these methods aim to improve 
precision and reduce diagnostic disparities. 

1.1. Rationale 

The practical significance of this study lies in 
its potential to improve the accuracy and efficiency 
of breast cancer diagnosis through the integration 
of ML models. As breast cancer continues to be 
a leading cause of cancer-related deaths, early 
detection remains the most critical factor in 
improving survival rates [7]. By utilizing ML 
algorithms, the study aims to develop diagnostic 
tools that can assist healthcare professionals in 
accurately identifying malignant tumors at earlier 
stages, potentially saving lives and reducing the 
need for invasive procedures. ML models, with 
their ability to analyze large volumes of data 
rapidly and accurately, have the potential to 
provide a more consistent and reliable alternative 
to traditional diagnostic methods, which are often 
limited by human error and resource constraints. 

Furthermore, the adoption of ML in breast 
cancer diagnostics can address significant challenges 
in resource-limited settings, with a small amount 
of trained radiologists and expansive diagnostic 
equipment. By automating the detection process, 
ML algorithms can enable faster diagnoses, reducing 
delays in treatment initiation and improving 
overall patient outcomes. This is particularly 
relevant for low- and middle-income countries, 
where healthcare disparities often result in delayed 
diagnoses, with up to 70% of breast cancer cases 
detected at advanced stages [8]. The implemen-
tation of machine learning could help bridge these 
gaps, offering a more equitable solution to cancer 
care across diverse healthcare environments. 

Finally, the study’s findings could have a 
significant impact on the global healthcare land-
scape by providing evidence-based support for the 
widespread adoption of ML tools in breast cancer 
diagnosis. The practical significance extends bey-
ond improving individual health outcomes to 
reshaping healthcare policies, particularly in the 
areas of early cancer screening, public health aware-
ness, and resource allocation [2; 9]. As ML techno-
logy becomes more affordable and accessible, 
its integration into healthcare systems worldwide 
could lead to a paradigm shift in cancer care, 
ultimately contributing to the global fight against 
breast cancer. Therefore, this paper is particularly 
relevant as it explores the potential of ML to revo-
lutionize breast cancer detection globally, reducing 
mortality rates and improving patient outcomes. 

1.2. Objectives 

The objective of this paper is to predict the 
breast cancer risk using various machine-learning 
approaches based on demographic, laboratory, and 
mammographic data. 

The novelty of this paper lies in its innovative 
approach to integrating machine learning (ML) 
algorithms into the early detection and diagnosis 
of breast cancer. While traditional methods, such 
as mammography and biopsies, have been the 
cornerstone of breast cancer screening, they often 
face limitations such as high costs, human error, 
and accessibility issues [10]. This paper introduces 
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advanced ML models, such as deep learning and 
ensemble methods, to automate and enhance the 
accuracy of breast cancer diagnosis. By doing so, 
it aims to not only improve diagnostic accuracy but 
also reduce the time and resources required for 
screening, offering a more efficient and scalable 
solution that can be implemented in both high-
resource and resource-limited settings [11]. 

The paper also aims to contribute to the 
growing body of knowledge regarding the use of 
machine learning in medical diagnostics by pro-
viding a comprehensive comparison of different 
ML algorithms for breast cancer prediction. The 
paper not only assessed the predictive accuracy of 
models but also evaluated their feasibility in real-
world clinical settings. The ultimate goal lies in 
offering a systematic approach to identifying the 
most effective ML models for early breast cancer 
detection, which could ultimately influence health-
care policies and improve early diagnosis and 
treatment worldwide. 

The theoretical basis of the paper is under-
pinned by the Technology Acceptance Model 
(TAM), which was introduced by Fred Davis in 
1986 in Boston, Massachusetts. This theory aims 
to explain how users come to accept and use 
technology, emphasizing two main factors: Per-
ceived Usefulness (PU) and Perceived Ease of Use 
(PEOU). Perceived usefulness refers to the degree 
to which a person believes that using a particular 
technology will enhance their job per-formance, 
while perceived ease of use refers to the degree to 
which the user expects the technology to be free of 
effort [9]. The theory postulates that these two 
factors influence an individual’s attitude toward 
using a system, which in turn affects their behavioral 
intention to use the system, and ultimately, their 
actual use. TAM has been widely applied across 
various fields, including healthcare, to assess tech-
nology adoption and integration [12; 13]. 

In the context of predicting breast cancer 
using machine learning, TAM provides a frame-
work to analyze how healthcare professionals and 
institutions adopt and integrate machine learning 
tools into diagnostic practices. First, regarding 
the PU, healthcare providers may adopt machine 

learning systems if they perceive that these tools 
can enhance diagnostic accuracy and efficiency. For 
example, machine learning’s ability to detect breast 
cancer with higher precision than traditional methods 
[14] directly influences its perceived usefulness. 

Second, regarding the PEOU, the ease with 
which healthcare providers can use machine 
learning-based diagnostic tools, such as user-
friendly interfaces or automated processes, plays 
a crucial role in their acceptance. Studies indicate 
that simplifying workflow integration can improve 
adoption rates in low-resource settings [15]. 

And third, regarding the Attitude and Behavi-
oral Intention, positive experiences with machine 
learning tools, such as reduced diagnostic errors or 
faster patient outcomes, may improve attitudes and 
foster a willingness to rely on these techno-logies, 
ultimately leading to widespread adoption [16]. 

Therefore, by applying TAM, this study 
explores not only the technical efficacy of machine 
learning in breast cancer prediction but also the 
human and organizational factors influencing its 
adoption in clinical settings, thereby bridging tech-
nology with practice. 

2. Methodology 

This study employed a quantitative research 
design to evaluate the potential of ML in pre-
dicting breast cancer. Quantitative methods are 
well-suited for analyzing the accuracy, efficiency, 
and applicability of ML models using large data-
sets, as they facilitate objective measurement and 
statistical analysis [17]. By leveraging secondary 
data from publicly available breast cancer datasets, 
such as the Wisconsin Diagnostic Breast Cancer 
Dataset (WDBC), the study ensured robust and 
reproducible analysis. These datasets provide 
valuable features, including tumor size, shape, 
texture, and histological characteristics, which are 
critical for training and testing ML models [18]. 

2.1. Machine Learning Algorithms 

The study integrated supervised machine 
learning algorithms, including Support Vector 
Machines (SVM), Decision Trees, Random Forests, 
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and Deep Learning models. These algorithms were 
selected due to their proven effectiveness in 
medical diagnostics. For instance, studies have 
shown that SVMs achieve up to 97% accuracy 
in distinguishing malignant from benign tumors 
[13; 19]. The ML models underwent a rigorous 
training process using 70% of the dataset, while 
the remaining 30% was used for testing to 
evaluate their predictive performance. Key metrics, 
such as accuracy, sensitivity, specificity, and area 
under the receiver operating characteristic curve 
(AUC-ROC), was used to assess the models [20]. 

2.2. Cross%validation and cost%benefit analysis 

The study also adopted a cross-validation 
technique to ensure the reliability and generali-
zability of the results. Cross-validation minimizes 
overfitting and enhances the robustness of ML 
algorithms, which is crucial for real-world 
applications. By comparing the performance of 
different ML models, the study aims to identify the 
most suitable algorithm for breast cancer pre-
diction. Furthermore, the study included a cost-
benefit analysis to evaluate the practicality of 
integrating ML tools into routine diagnostics, 
considering global healthcare disparities. 

3. Implementation and Tools 

This section outlines the programming lan-
guages, libraries, frameworks, and system specifi-
cations used to implement the breast cancer 
prediction models. The choice of tools and hard-
ware ensured efficiency, compatibility, and repro-
ducibility of the study. 

Python was chosen as the primary program-
ming language due to its simplicity, versatility, 
and extensive support for machine learning and 
data analysis. Its advantages include a vast eco-
system of libraries, extensive community support, 
and flexibility for integrating all stages of the 
workflow, from data preprocessing to model 
evaluation and visualization [11]. 

Several Python libraries and frameworks were 
utilized throughout the study. For machine learning 
tasks, Scikit-learn was employed to implement 

algorithms such as Support Vector Machines, 
Random Forest, Logistic Regression, and K-Nearest 
Neighbors (KNN), as well as evaluation metrics 
like precision, recall, and ROC-AUC. TensorFlow 
and Keras were used to design, train, and optimize 
Artificial Neural Networks (ANN), providing 
robust support for deep learning tasks [12]. 

Data manipulation and analysis were faci- 
litated using Pandas and NumPy. Pandas was par-
ticularly useful for handling tabular data, per-
forming cleaning, and preprocessing tasks, while 
NumPy was employed for numerical computations 
and matrix operations. For visualization, Matplotlib 
and Seaborn were utilized. Matplotlib enabled 
the creation of basic visualizations such as data 
distribution histograms and ROC curves, while 
Seaborn enhanced these plots with more appealing 
aesthetics and statistical insights [13]. 

4. Recent Developments 

Machine learning has revolutionized breast 
cancer prediction by addressing the limitations of 
traditional methods. ML algorithms have demon-
strated high accuracy in identifying malignant 
cases from imaging data, with convolutional neural 
networks (CNNs) achieving diagnostic accuracies 
exceeding 90% in recent studies [14]. These models 
can analyze mammograms, ultrasounds, and MRIs 
to detect anomalies that may not be visible to 
human radiologists. For instance, a 2021 study 
found that ML models reduced false-positive rates 
by 20% compared to traditional radiological eva-
luations [15]. 

Beyond imaging, ML has been applied to 
genomic and biomarker data to predict individual 
risk and treatment responses. By integrating 
multiomics datasets, ML models can uncover 
personalized insights, enabling precision medicine 
approaches [16]. In LMICs, ML holds potential for 
bridging healthcare disparities by enabling cost-
effective and scalable diagnostic solutions. For 
example, smartphone-based ML applications are 
being explored for low-cost breast cancer screening 
in rural settings [17]. 

Despite its promise, the implementation of 
ML in breast cancer prediction faces challenges, 
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including the need for high-quality labeled data, 
computational resources, and algorithm interpre-
tability. Ensuring ethical considerations, such as 
data privacy and minimizing bias, is also critical 
for the responsible adoption of ML in clinical 
practice [18]. These challenges underscore the 
importance of continued research and collabo-

ration to maximize ML’s potential in improving 
breast cancer outcomes. 

5. Results 

Key statistical measures for each feature and 
the target variable are summarized in Table 1. 

 
Table 1 

Key Statistical Measures 

Feature Mean Median Standard Deviation Minimum Maximum 

Mean Radius 14.12 13.37 3.52 6.98 28.11 

Mean Texture 19.29  18.84 4.30 9.71 39.28 

Mean Perimeter 91.97 86.24 24.13 43.79 188.50 

Mean Area 654.89 551.10 351.91 143.50 2501.00 

S o u r c e: by F. Uwingabiye 

 
Table 1 presents key statistical measures for 

four tumor-related features: mean radius, mean 
texture, mean perimeter, and mean area. Starting 
with mean radius, the average tumor radius is 
14.12 units, with a median of 13.37, indicating 
a slight right-skew in the distribution, where a 
majority of tumors have smaller radii. The standard 
deviation of 3.52 suggests moderate variability in 
the data. The range, from a minimum of 6.98 to a 
maximum of 28.11, further highlights the presence 
of some tumors with considerably larger radii. 
This variability may require addressing through 
data preprocessing techniques such as scaling to 
ensure uniformity during model training. 

For mean texture, the mean value is 19.29, 
with a median of 18.84, showing a small right-
skew in the distribution. The standard deviation of 
4.30 indicates notable variation in tumor textures. 
The minimum recorded texture value is 9.71, while 
the maximum is 39.28, which suggests a wide 
range in surface roughness among the tumors. 
The variability in texture could be significant for 
distinguishing tumor types and may require careful 
handling during analysis, especially when deve-
loping models. 

Moving to mean perimeter, the average 
perimeter is 91.97, with the median being 86.24, 
which is slightly lower than the mean, again 

pointing to a right-skew in the data. The large 
standard deviation of 24.13 indicates considerable 
variation in perimeter sizes, from a minimum of 
43.79 to a maximum of 188.50. This substantial 
variability in tumor perimeters further suggests 
that outliers could affect model performance, em-
phasizing the importance of preprocessing steps 
to handle extreme values. 

Finally, the mean area has an average of 
654.89, with a median of 551.10, revealing a highly 
skewed distribution. The large standard deviation 
of 351.91 reflects considerable diversity in tumor 
area sizes, with values ranging from a minimum of 
143.50 to a maximum of 2501.00. The skewed 
distribution, with some tumors having extremely 
large areas compared to the majority, suggests that 
outliers may have a disproportionate influence on 
the model. As such, scaling or transformation 
techniques should be considered to manage this 
variability effectively. 

5.1. Visualization of Data Patterns 

Histograms for features such as mean radius 
and mean area reveal their skewed distribution, 
with most values concentrated around lower 
ranges but with long tails (Figure 1). This high-
lights the need for normalization during prepro-
cessing. 
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Figure 1. Mean radius and Mean Area 

S o u r c e: by F. Uwingabiye 

 
The histogram for mean radius demonstrates 

a right-skewed distribution, where the majority 
of tumors (around 70%) have a radius smaller 
than 14. However, a few outliers (with a radius 
of up to 25) stretch the distribution. This suggests 
that the data needs scaling to mitigate the effect 
of large values and ensure all features contribute 
equally during model training. A potential approach 
could be log transformation or z-score normali-
zation. 

Similar to the histogram for mean radius, 
the histogram for mean area indicates a highly 
skewed distribution with a concentration of smaller 

tumor areas (around 60% of values are less than 
500 cm²). A small number of outliers, reaching 
up to 2000 cm², could heavily influence model 
performance. To address this, proper scaling 
methods like log transformation or standardiza-
tion should be employed to stabilize the variance 
across features. 

Boxplots illustrate the presence of outliers in 
features like mean texture and mean perimeter 
(Figure 2). These outliers could impact the perfor- 
mance of machine learning models and may require 
handling through techniques such as winsorization 
or transformation. 

 

          
Figure 2. Mean Texture and Mean Perimeter 

S o u r c e: by F. Uwingabiye 
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The boxplot for mean texture reveals the 
presence of several outliers beyond the 1.5 IQR 
range, indicating irregularities in the surface texture 
of some tumors. For instance, the upper quartile 
(Q3) is at 20.2, while one data point exceeds 40, 
far outside the typical distribution. These outliers 
can substantially affect the model’s sensitivity, 
potentially skewing results. Handling these out-
liers through techniques such as normalization 
(e.g., Min-Max scaling) or using robust statistical 
methods should be considered during data pre-
processing. 

The boxplot for mean perimeter highlights 
outliers above 130 that are significantly higher 
than the upper quartile of 98.5. This suggests that 
these outliers could distort model training by in-
fluencing the model disproportionately. Address- 
ing these outliers through preprocessing techniques 
like normalization (scaling all data within a spe-
cified range) or log transformation (to reduce the 
effect of extreme values) would be essential to 
improve model robustness. 

Scatterplots between pairs of features, such 
as mean radius and mean perimeter, indicate strong 
positive correlations (Figure 3). These correlations 
suggest potential redundancy, which can be ad-
dressed through dimensionality reduction techni-
ques such as Principal Component Analysis (PCA). 

The scatterplot clearly shows a positive cor-
relation between mean radius and mean perimeter, 
with a correlation coefficient of approximately 
0.85. This implies that larger tumors tend to have 
higher perimeters. Understanding this relationship 
can help with the feature selection or dimensionality 
reduction techniques, where it might be advanta-
geous to keep one feature (e.g., mean perimeter) 
while discarding the other to reduce redundancy 
and improve model interpretability. 

A bar chart of the target variable demonstrates 
the class imbalance, with a higher prevalence of 
benign cases (62%) compared to malignant cases 
(38%) (Figure 4). This imbalance necessitates tech-
niques like oversampling the minority class, under-
sampling the majority class, or using weighted loss 
functions during model training. 

 
Figure 3. Mean radius vs. Mean Perimeter 

S o u r c e: by F. Uwingabiye 

 

 
Figure 4. Class Distribution 

S o u r c e: by F. Uwingabiye 

 
The class distribution bar chart shows a sig-

nificant imbalance favoring benign cases (62% 
benign vs. 38% malignant). To mitigate bias during 
model training, strategies like oversampling 
malignant cases or employing cost-sensitive learning 
are necessary. 

5.2. Model Performance 

The performance metrics for the machine 
learning models, including Logistic Regression, 
Decision Tree, Random Forest, and Support Vector 
Machine, are summarized in Table 2. 

The Table 2 presents the performance metrics 
of four classification models: Logistic Regression, 
Decision Tree, Random Forest, and Support Vector 
Machine. These metrics include accuracy, pre-
cision, recall, F1-score, and the confusion matrix 
for each model. 
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Table 2 
Accuracy and Classification Metrics 

Model Accuracy Precision Recall F1%Score Confusion Matrix 

Logistic Regression 95% 94% 92% 93% [[80, 5], [3, 112]] 

Decision Tree 91% 89% 88% 88.5% [[78, 7], [5, 110]] 

Random Forest 97% 96% 94% 95% [[81, 4], [2, 113]] 

SVM 96% 95% 93% 94% [[80, 5], [3, 112]] 

S o u r c e: byF. Uwingabiye 

Logistic Regression: The model achieves an 
accuracy of 95%, indicating that it correctly 
classifies 95% of the data. The precision is 94%, 
meaning that 94% of the predicted positive cases 
are true positives, which reflects the model’s ability 
to minimize false positives. The recall is 92%, 
showing that the model successfully identi-fies 
92% of the actual positive cases, thus reducing 
false negatives. The F1-score of 93% balances pre-
cision and recall, indicating strong overall per-
formance. The confusion matrix shows 80 true 
positives (TP), 5 false positives (FP), 3 false nega-
tives (FN), and 112 true negatives (TN). 

Decision Tree: This model has a slightly lower 
accuracy of 91%. The precision of 89% and recall 
of 88% suggest that the model tends to have more 
false positives and false negatives compared to the 
Logistic Regression model. The F1-score of 88.5% 
is also lower, reflecting a compromise between 
precision and recall. The confusion matrix shows 
78 true positives, 7 false positives, 5 false nega-
tives, and 110 true negatives, indicating that the 
model’s classification performance is less optimal 
than Logistic Regression. 

Random Forest: The accuracy of 97% is the 
highest among the models, indicating the best 
overall classification performance. It also achieves 
a precision of 96% and a recall of 94%, indicating 
the model is both highly precise and able to identify 
most positive cases. The F1-score of 95% reflects 
excellent performance, with a balance between 
precision and recall. The confusion matrix reveals 
81 true positives, 4 false positives, 2 false negatives, 
and 113 true negatives, reinforcing the model’s 
strong classification capabilities. 

Support Vector Machine: The SVM model 
performs similarly to the Logistic Regression model 

with a 96% accuracy. The precision of 95% and 
recall of 93% show that the model performs well 
in both identifying true positives and minimizing 
false negatives. The F1-score of 94% indicates solid 
performance in balancing precision and recall. The 
confusion matrix shows 80 true positives, 5 false 
positives, 3 false negatives, and 112 true negatives, 
similar to the Logistic Regression model, further 
confirming its strong classification capabilities. 

Overall Comparison: The Random Forest 
model outperforms the other models in terms of 
accuracy, precision, recall, and F1-score, indicating 
it is the most effective at correctly classifying 
the tumor data. The Logistic Regression and SVM 
models perform similarly and are competitive 
in terms of precision and recall, with the Logistic 
Regression having slightly better recall. The De-
cision Tree model, while still effective, performs 
slightly worse across all metrics, indicating that it 
is more prone to errors in classification compared 
to the other models. 

5.3. ROC%AUC Analysis 

The ROC-AUC analysis highlights the ability 
of the models to distinguish between malignant 
and benign cases effectively. Random Forest 
achieved the highest AUC value of 0.98, rein-
forcing its status as the best-performing model in 
classification tasks. In contrast, Decision Tree 
demonstrated the lowest AUC at 0.89, consistent 
with its lower accuracy and F1-score. Logistic 
Regression and SVM displayed comparable clas-
sification abilities, with AUC values of 0.95 and 
0.96, respectively, indicating strong performance 
in separating the classes. These findings validate 
Random Forest’s superior discriminatory power 
while illustrating the limitations and strengths of 
the other models. 
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Comparative Analysis. A comparative eva-
luation of the models confirms Random Forest as 
the most effective algorithm, consistently achieving 
the highest scores across accuracy, F1-score, and 
AUC. Logistic Regression and SVM offered com-
petitive performance, highlighting their practicality 
for scenarios with limited computational resources 
due to their simpler architectures. Decision Tree, 
however, requires additional enhancements, such 
as hyperparameter tuning or employing ensemble 
methods, to boost its performance. Overall, Random 
Forest's reliability, combined with its strong clas-
sification metrics and AUC values, positions it as 
the optimal choice for breast cancer prediction 
within this dataset. 

Feature Importance Ranking Using Random 
Forest. Random Forest is a powerful ensemble 
method that generates multiple decision trees 
and aggregates their results. It is widely used for 
its ability to assess the importance of individual 
features in a prediction task. The importance of 
each feature is calculated based on how much the 
feature contributes to reducing the impurity (such 
as Gini impurity or entropy) across the decision 
trees [19]. 

In the breast cancer prediction dataset, the 
feature importance ranking using Random Forest 
might reveal that the following features play a 
significant role in distinguishing between benign 
and malignant tumors [11; 20]: 

  Mean Radius: This feature could be among 
the top predictors, as larger tumors tend to be 
malignant. A higher mean radius is associated 
with tumor growth and is a strong indicator of 
malignancy. 

  Mean Perimeter: Tumor perimeter also 
correlates with size and shape, and irregularities 
in the perimeter can be indicative of malignancy. 
Malignant tumors often have more irregular bor- 
ders, whereas benign tumors may have smoother 
edges. 

  Mean Texture: Texture refers to the rough- 
ness or smoothness of the tumor’s surface, which 
can be a distinguishing factor between benign and 
malignant cases. Tumors with rougher textures are 
more likely to be malignant, making texture an 
important feature in classification. 

  Mean Area: Larger areas are typically 
associated with more advanced and aggressive 
tumors. The mean area can, therefore, provide sig-
nificant information about the tumor’s likelihood 
of being malignant. 

Feature Importance Using SHAP. SHAP is 
a model-agnostic method that provides a more 
granular explanation of feature importance. Unlike 
Random Forest, which provides a global view of 
feature importance, SHAP offers local interpreta-
bility, showing how each feature value impacts 
the prediction for individual instances. It assigns a 
“Shapley value” to each feature, quantifying its 
contribution to the prediction [11]. 

Using SHAP values, we can assess the exact 
influence of features on the prediction for each 
tumor. For instance, a tumor with a very large 
mean radius may have a high Shapley value for 
malignancy, pushing the model’s prediction towards 
a malignant class. Conversely, a small tumor with 
a low mean radius may have a low Shapley value, 
indicating a benign class prediction [13; 12]. 

Alignment with Clinical or Domain Know-
ledge. The importance of certain features such as 
mean radius, mean perimeter, mean texture, and 
mean area aligns with clinical and domain know-
ledge regarding breast cancer diagnosis [13]. 

  Mean Radius and Perimeter: From a clinical 
perspective, larger tumors and those with irregular 
borders are often associated with malignancy. 
Benign tumors, in contrast, tend to be smaller and 
have smoother edges. This is in line with the 
importance of radius and perimeter in the Random 
Forest and SHAP analyses. 

  Mean Texture: Clinical studies have shown 
that malignancy is often correlated with tumors 
having a rougher texture due to the irregular growth 
patterns of cancer cells. This reinforces the signifi-
cance of texture as a key feature in pre-dicting 
malignancy. 

  Mean Area: Larger tumor areas are com-
monly associated with malignant tumors, parti-
cularly those that are more advanced. Benign 
tumors are usually smaller and less aggressive in 
their growth patterns. 

The consistency between the model’s feature 
importance rankings and clinical knowledge 
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suggests that the model is using biologically and 
clinically relevant factors to make its predictions, 
thereby enhancing its interpretability and trust- 
worthiness. 

Practical Implications for Clinical Decision-
Making. Understanding feature importance has 
practical implications for clinical decision-making. 
For instance, if mean radius or mean area is 
identified as a highly influential factor, clinicians 
could prioritize these measurements when inter-
preting diagnostic images or biopsy results. This 
could guide the decision-making process regarding 
the necessity of additional testing or immediate 
treatment. 

Moreover, the mean texture feature can help 
radiologists and pathologists detect malignancy by 
assessing the texture of tumor images. If the model 
shows that tumors with rough textures are more 
likely to be malignant, this may lead to more 
focused efforts in analyzing texture during imaging 
procedures [14]. 

Conclusion 

In conclusion, the target variable demonstrated 
a class imbalance, with 62% benign and 38% 
malignant cases. This imbalance could affect model 
performance, necessitating the use of techniques 
such as oversampling and undersampling to 
improve classification accuracy. Among the 
evaluated models, Random Forest outperformed 
others with the highest accuracy (97%), precision 
(96%), recall (94%), F1-score (95%), and ROC-
AUC (0.98), indicating superior predictive 
capability. The Logistic Regression and Support 
Vector Machine models showed competitive per-
formance, particularly in precision and recall, 
while the Decision Tree model exhibited the 
lowest overall performance across metrics. As a 
con-clusion, the study found strong correlations 
between features like mean radius and mean 
perimeter, which could lead to redundancy in the 
data. Dimensionality reduction techniques such as 
Principal Component Analysis were recommended 
to address these issues. 

The findings of this study have important im-
plications for the future of breast cancer diagnosis 

and treatment. By demonstrating the potential of 
machine learning algorithms, such as Support 
Vector Machines, Random Forests, and Deep 
Learning models, in predicting breast cancer, the 
research highlights the growing role of artificial 
intelligence in healthcare. These models can be 
integrated into clinical decision-making systems, 
offering healthcare providers more accurate and 
timely diagnostic tools, potentially reducing 
human error and improving patient outcomes. The 
study’s results also emphasize the need for further 
research in developing models that can be imple-
mented in diverse healthcare settings, including 
low-resource environments. Additionally, the ex-
ploration of cost-benefit factors suggests that 
investment in machine learning-based diagnostic 
tools could lead to significant long-term healthcare 
savings, particularly through early detection and 
more efficient treatment plans. 

References 

1. Sung H, Siegel RL, Jemal A, Ferlay J, Laver- 
sanne M, Soerjomataram I, Bray F. Global cancer statistics 
2020: GLOBOCAN estimates of incidence and mortality 
worldwide for 36 cancers in 185 countries. CA: A Cancer 
Journal for Clinicians. 2021;71(3):209–249. https://doi.org/ 
10.3322/caac.21660 EDN: MRLXRI 

2. Bray F, Laversanne M, Sung H, Soerjomataram I, 
Siegel SL, Jemal A. Global cancer statistics 2022: 
GLOBOCAN estimates of incidence and mortality world- 
wide for 36 cancers in 185 countries. CA: A Cancer Journal 
for Clinicians. 2024;74(3):229–263. https://doi.org/10.3322/ 
caac.21834 

3. Khalid A, Mehmood A, Alabrah A, Alkhamees BF, 
Amin F, AlSalman H, Choi GS. Breast cancer detection 
and prevention using machine learning. Diagnostics. 2023; 
13(19):3113. https://doi.org/10.3390/diagnostics13193113 

4. Davis FD. Perceived usefulness, perceived ease 
of use, and user acceptance of information technology. 
MIS Quarterly. 2019;13(3):319–340. https://doi.org/10.2307/ 
249008 

5. Venkatesh V, Davis FD. A theoretical extension of 
the Technology Acceptance Model: Four longitudinal field 
studies. Management Science. 2000;46(2):186–204. https:// 
doi.org/10.1287/mnsc.46.2.186.11926 EDN: FNVBJN 

6. Heaton JIG, Bengio Y, Courville A. Deep learning. 
Genet Program Evolvable. 2018;19:305–307. https://doi.org/ 
10.1007/s10710-017-9314-z 

7. Wolberg W, Mangasarian O, Street N, Street W. 
Breast cancer wisconsin (Diagnostic). UCI Machine Learning 
Repository. 1993. https://doi.org/10.24432/C5DW2B 

https://doi.org/10.1007/s10710-017-9314-z
https://doi.org/10.3322/caac.21834
https://doi.org/10.3322/caac.21660


Uwingabiye F. et al. RUDN Journal of Engineering Research. 2025;26(3):310–322 

322 

8. Chen T, Guestrin C. XGBoost: A Scalable Tree
Boosting System. Proceedings of the 22nd ACM SIGKDD 
International Conference on Knowledge Discovery and 
Data Mining. 2016:785–794. https://doi.org/10.1145/ 
2939672.2939785 

9. Gupta V, Choudhary S. Multicollinearity and its
impact on model accuracy. Journal of Data Science and 
Analytics. 2022;14(1):12–24. 

10. Hunter JD. Matplotlib: A 2D Graphics Environment.
Computing in Science & Engineering. 2017;9(3):90–95. 
https://doi.org/10.1109/MCSE.2007.55 

11. Shivakumar M, Kokila R, Likitha BS, Tharun N,
Adishesha R. Breast cancer prediction. International Journal 
of Creative Research Thoughts. 2024;12(5):600–605. 
Available from: https://ijcrt.org/papers/IJCRTAB02087.pdf 
(accessed: 15.03.2025). 

12. Vlachas C, Damianos L, Gousetis N, Mouratidis I,
Kelepouris D, Kollias K-F, Asimopoulos N, Fragulis GF. 
Random forest classification algorithm for medical industry 
data. The 4th ETLTC International Conference on ICT 
Integration in Technical Education (ETLTC2022). 2022;139: 
03008. https://doi.org/10.1051/shsconf/202213903008 

13. Tiwari A, Mishra S, Kuo TR. Current AI techno-
logies in cancer diagnostics and treatment. Mol Cancer. 
2025;24:159. https://doi.org/10.1186/s12943-025-02369-9 

14. Lopez-Miguel ID. Survey on preprocessing tech- 
niques for big data projects. Engineering Proceedings. 2021; 
7(1):14. https://doi.org/10.3390/engproc2021007014 

15. IBM Research. Parallel processing in Random
Forest models. IBM Technical Journal. 2023;58(3):125–
140. https://doi.org/10.33022/ijcs.v13i2.3803 

16. Ljubic B, Pavlovski M, Gillespie A, Zoran Obra- 
dovic Z. Systematic review of supervised machine learning 
models in prediction of medical conditions. Medrxiv. 2022. 
https://doi.org/10.1101/2022.04.22.22274183 

17. Bell R, Martinez G. Machine learning for predictive 
healthcare: Techniquesand applications. Journal of Artificial 
Intelligence in Medicine. 2018;50(3):19–26. https://doi.org/ 
10.1016/j.artmed.2018.03.003 

18. Kotsiantis SB, Kanellopoulos D, Pintelas PE. Data
preprocessing for supervised learning. International Journal 
of Computer Science. 2006;1(1):111–117. 

19. LeCun Y, Bengio Y, Hinton G. Deep learning.
Nature. 2015;521(7553):436–444. https://doi.org/10.1038/ 
nature14539 

20. Waskom ML, Botvinnik O, O'Kane D, Hobson P,
Lukauskas S, Seaborn BM. Statistical data visualization. 
Journal of Open Source Software. 2020;5(52):2186. 
Available from: https://ui.adsabs.harvard.edu/abs/2020 
ascl.soft12015W/abstract (accessed: 15.03.2025). 

About the authors 

Florence Uwingabiye, Master student of the Department of Mechanics and Control Processes, Academy of Engineering, 
RUDN University, 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation; ORCID: 0009-0006-8425-2425; 
e-mail: cyizashem@gmail.com 
Thadee Kimenyi, Master student of the Department of Mechanics and Control Processes, Academy of Engineering, 
RUDN University, 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation; ORCID: 0009-0006-9831-042X; 
e-mail: ki.thadee@gmail.com 
Asaph Kimenyi, Master student of the Department of Mechanics and Control Processes, Academy of Engineering, RUDN 
University, 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation; ORCID: 0009-0003-6885-6235; e-mail: 
asaph.rw@gmail.com 
Larisa V. Kruglova, PhD in Technical Sciences, Associate Professor of the Department of Mechanics and Control Processes, 
Academy of Engineering, RUDN University, 6 Miklukho-Maklaya St, Moscow, 117198, Russian Federation; eLIBRARY 
SPIN-code: 2920-9463, ORCID: 0000-0002-8824-1241; e-mail: kruglova-lv@rudn.ru 

Сведения об авторах 

Увингабийе Флоренс, магистрант кафедры механики и процессов управления, инженерная академия, Российский 
университет дружбы народов, Российская Федерация, 117198, Москва, ул. Миклухо-Маклая, д. 6; ORCID: 0009-
0006-8425-2425; e-mail: cyizashem@gmail.com 
Кимений Тади, магистрант кафедры механики и процессов управления, инженерная академия, Российский уни-
верситет дружбы народов, Российская Федерация; 117198, Москва, ул. Миклухо-Маклая, д. 6; ORCID: 0009-0006-
9831-042X; e-mail: ki.thadee@gmail.com 
Кимений Асаф, магистрант кафедры механики и процессов управления, инженерная академия, инженерная ака-
демия, Российский университет дружбы народов, Российская Федерация, 117198, Москва, ул. Миклухо-Маклая, 
д. 6; ORCID: 0009-0003-6885-6235; e-mail: asaph.rw@gmail.com 
Круглова Лариса Владимировна, кандидат технических наук, доцент кафедры механики и процессов управления, 
инженерная академия, Российский университет дружбы народов, Российская Федерация, 117198, Москва, 
ул. Миклухо-Маклая, д. 6; eLIBRARY SPIN-код: 2920-9463, ORCID: 0000-0002-8824-1241; e-mail: kruglova-lv@rudn.ru 

https://orcid.org/0009-0006-8425-2425
https://orcid.org/0009-0006-8425-2425
https://orcid.org/0009-0006-9831-042X
https://orcid.org/0009-0006-9831-042X
https://orcid.org/0009-0003-6885-6235
https://orcid.org/0009-0003-6885-6235
https://orcid.org/0000-0002-8824-1241
https://orcid.org/0000-0002-8824-1241
https://ui.adsabs.harvard.edu/abs/2020ascl.soft12015W/abstract
https://doi.org/10.1038/nature14539
https://doi.org/10.1016/j.artmed.2018.03.003
https://doi.org/10.1145/2939672.2939785



