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of machine learning (ML) in predicting breast cancer. It integrated supervised ML algorithms,
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Learning models, to evaluate their accuracy, efficiency, and applicability in medical
diagnostics. The dataset revealed significant variability in tumor features such as mean radius,
mean texture, mean perimeter, and mean area. The target variable demonstrated a class
imbalance, with 62% benign and 38% malignant cases. Among the evaluated models, Random
Forest outperformed others with the highest accuracy, precision, recall, F1-score, and ROC-
AUC, indicating superior predictive capability. The Logistic Regression and Support Vector
Machine models showed competitive performance, particularly in precision and recall, while
the Decision Tree model exhibited the lowest overall performance across metrics.
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3asiBjieHUE O KOH(I)J'IHKTC HHTEpeCcoB

ABTOpBI 3a5IBIISIFOT 00 OTCYTCTBHH
KOH()JIMKTa HHTEPECOB.

AHHoTanus. Pak MOJIOUHO# *kele3bl 0CTaeTcs OJHOW M3 OCHOBHBIX IPUYHH
3a001€Ba€MOCTH U CMEPTHOCTH CPEIr JKeHIIWH BO BceM mMupe. HecmoTpst Ha
3HAYUTENIbHBIC YCHIIWS, HAPABJICHHBIC HA PaHHEE BBISBICHUE OOJIE3HH, PaK
MOJIOYHOM KeJie3bl MO-NPEKHEMY TPENCTABISAET COO0H Cepbe3HyI0 MpobiemMy
JUI 3I0pOBbsl HacesdeHus. Llenb uccieqoBaHMs — IMPOTHO3HMPOBAHUE pHUCKA
paka MOJIOYHOM KeJe3bl C UCTIOIB30BAaHHEM PA3THYHBIX ITOAXO0I0B MAITHHHOTO
00yueHHsl, OCHOBaHHBIX Ha JIeMOTrpapMUECKHX, JTJA00OPATOPHBIX U MaMMOTpadu-
YeCKHUX JaHHBIX. VMcnonp30BaHa MOAENb KOJIMYECTBEHHBIX OIIEHOK METO/OB
MAaIIMHHOr0 00Y4YeHUs B IPOTHO3UPOBAaHUU paKa MOJIOYHOM >kene3bl. Moaenb
WHTETPUPYET alTOPUTMbl MALIMHHOTO OOy4YeHHMs, BKJIIOYAs METOJ OMOPHBIX
BEKTOPOB, JIEPEBbs PEIICHUH, CITydaiiHbIe JIeca U MOJICIHU TITy00KOro 00y4eHus,
JUIS OLEHKH UX TOYHOCTH, 3PPEKTUBHOCTH U MPUMEHHUMOCTH B MEAWIMHCKOM
quarnoctuke. Habop JaHHBIX BBISSBUIJI 3HAUYUTENBHYO H3MEHYHBOCTh B Mapa-
METpax OIyXOJIH, TAKUX KaK CPEJAHHUU pajnycC, CpeAHssl TEKCTypa, CPeAHUN
MepUMETp U cpeiHsas Iuowmas. LleneBas nepemeHHast IpoAEeMOHCTPUpPOBaIa
nucbananc Kimaccos, ¢ 62 % moOpokadecTBeHHBIX U 38 % 37I0Ka4eCTBEHHBIX
cinyvaeB. Cpenu oreHeHHbIX Mojeneii Random Forest nmpes3omnuia apyrue no
HanOOJIbIIEH TOYHOCTH, YyBCTBUTEIILHOCTH, TTOJIHOTE, F 1-Mepe u riomaau nox
KPHBOH OINEPAalMOHHBIX XapaKTEPUCTHK, YKa3blBas Ha HAWIYYIIYH) CIIOCO0-
HOCTb IIPOTHO3MPOBaHUs. MOJIENN JTIOTHCTUYECKOI perpeccuu 1 MeTojia orop-
HBIX BEKTOPOB MOKA3aJIl KOHKYPEHTOCTIOCOOHOCTh, OCOOCHHO MOYyBCTBUTEIb-
HOCTH U TIOJIHOTE, B TO BPEMS KaK MOJIENb JIepeBa PEUICHUH MPOJEMOHCTPHUPO-
BaJla CaMyl0 HHU3KYIO 001y 3 QEKTUBHOCTH 110 BCEM OKa3aTesM.

KiroueBble cJIoBa: paHHSS AMArHOCTHKA, OOIIECTBEHHOE 3[PaBOOXPaHCHUE,
OIyX0JIb, MAMMOTpa(usi, MEIUIMHCKAs JUATHOCTHKA, aITOPUTMBI MAIIHHHOTO
o0y4eHus
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Introduction

women were diagnosed with breast cancer, making
it the most prevalent cancer globally'.

Breast cancer remains one of the leading Despite advancements in medical techno-
causes of morbidity and mortality among women  logies, early detection remains a critical challenge,
worldwide. In 2020, an estimated 2.3 million as many cases are identified at advanced stages,

' WHO. Breast cancer: Early diagnosis and screening. Geneva: World Health Organization. 2021.
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particularly in low-resource settings. This delay
often leads to higher mortality rates, with breast
cancer accounting for approximately 685 000
deaths in 2020 alone’. The increasing burden
of breast cancer underscores the need for inno-
vative diagnostic solutions that can enhance early
detection and improve survival rates.

Traditional diagnostic methods, such as
mammography, clinical breast exams, and bio-
psies, play a pivotal role in detecting breast cancer.
However, these approaches are often limited by
human error, accessibility challenges, and high
costs, particularly in low-and middle-income
countries (LMICs). Studies have shown that mam-
mography, while effective, has sensitivity rates
ranging from 77 to 95% depending on patient
age and breast density [1]. Furthermore, false
positives and negatives can lead to unnecessary
procedures or missed diagnoses, emphasizing the
need for more accurate and efficient diagnostic
systems.

In recent years, machine learning (ML) has
emerged as a transformative tool in the medical
field, offering promising solutions for breast cancer
prediction. ML models, leveraging large datasets
and advanced algorithms, have demonstrated
superior performance in identifying early-stage
cancers. For instance, deep learning models have
achieved diagnostic accuracy rates of over 95% in
distinguishing malignant from benign lesions [2].
By integrating ML into breast cancer diagnostics,
healthcare systems have the potential to overcome
existing barriers, improve early detection, and
ultimately reduce global mortality rates.

By focusing on breast cancer, this article aims
to develop a machine learning model capable of
predicting breast cancer risk with high accuracy.

1. Background

Despite the global emphasis on early detec-
tion, breast cancer continues to pose a significant
public health challenge. Traditional diagnostic
methods, while valuable, are often constrained

by factors such as high costs, limited access in
LMICs, and variability in interpretation by radio-
logists. These challenges contribute to delayed
diagnoses, with up to 60% of breast cancer cases
in developing countries detected at advanced
stages®. This disparity highlights an urgent need
for innovative approaches that are both accurate
and accessible.

Machine learning has shown remarkable po-
tential in transforming breast cancer diagnostics,
yet its adoption faces significant barriers. Although
ML models have demonstrated diagnostic accuracy
rates exceeding those of traditional methods,
their integration into healthcare systems remains
limited. A lack of resources, technical expertise, and
standardized implementation strategies impedes
the use of ML, particularly in resource-constrained
settings [3]. Furthermore, concerns about algo-
rithmic bias and the reliability of Al-driven
diagnostics contribute to skepticism among health-
care providers.

Given these challenges, the global healthcare
community must address the gap between techno-
logical advancements and their practical application
in breast cancer prediction. This study seeks to
explore the potential of ML in overcoming these
barriers, focusing on its accuracy, cost-effective-
ness, and ability to improve early detection rates.
By addressing these issues, the paper aims to
contribute to the broader goal of reducing breast
cancer mortality and enhancing healthcare out-
comes worldwide.

Breast cancer prediction focuses on identi-
fying individuals with the risk of the disease
development or distinguishing between benign
and malignant cases. Early and accurate prediction
significantly improves treatment outcomes, as it
allows for timely interventions and better manage-
ment strategies [4]. The predictive process involves
evaluating various factors, including genetic pre-
dispositions, lifestyle behaviors, and clinical
markers, to assess the likelihood of developing
breast cancer. For instance, mutations in the BRCA1
and BRCA2 genes are well-documented predictors

2 Globocan. Global cancer statistics 2020. International Agency for Research on Cancer (IARC). 2020.
3 WHO. Breast cancer: Early diagnosis and screening. Geneva: World Health Organization. 2021.
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of breast cancer risk, accounting for 5-10% of
hereditary cases [5].

Additionally, predictive models often rely on
epidemiological data, which include variables such
as age, family history, and reproductive factors.
However, these models can be limited by the
complexity of cancer development, which involves
interactions between genetic, environmental, and
hormonal factors [6]. The integration of bio-
markers, such as hormone receptor status (e.g.,
HER2, estrogen, and progesterone receptors), has
enhanced prediction accuracy, but the reliance on
laboratory-based tests creates barriers in resource-
limited settings. Consequently, there is a growing
emphasis on developing advanced and accessible
predictive techniques.

The global rise in breast cancer incidence,
with 2.3 million new cases reported in 2020,
underscores the need for innovative prediction
methods. Emerging technologies like artificial
intelligence (AI) and machine learning are being
increasingly explored to bridge the gaps in pre-
diction accuracy and accessibility, particularly in
LMICs. By leveraging large datasets and compu-
tational power, these methods aim to improve
precision and reduce diagnostic disparities.

1. 1. Rationale

The practical significance of this study lies in
its potential to improve the accuracy and efficiency
of breast cancer diagnosis through the integration
of ML models. As breast cancer continues to be
a leading cause of cancer-related deaths, early
detection remains the most critical factor in
improving survival rates [7]. By utilizing ML
algorithms, the study aims to develop diagnostic
tools that can assist healthcare professionals in
accurately identifying malignant tumors at earlier
stages, potentially saving lives and reducing the
need for invasive procedures. ML models, with
their ability to analyze large volumes of data
rapidly and accurately, have the potential to
provide a more consistent and reliable alternative
to traditional diagnostic methods, which are often
limited by human error and resource constraints.

Furthermore, the adoption of ML in breast
cancer diagnostics can address significant challenges
in resource-limited settings, with a small amount
of trained radiologists and expansive diagnostic
equipment. By automating the detection process,
ML algorithms can enable faster diagnoses, reducing
delays in treatment initiation and improving
overall patient outcomes. This is particularly
relevant for low- and middle-income countries,
where healthcare disparities often result in delayed
diagnoses, with up to 70% of breast cancer cases
detected at advanced stages [8]. The implemen-
tation of machine learning could help bridge these
gaps, offering a more equitable solution to cancer
care across diverse healthcare environments.

Finally, the study’s findings could have a
significant impact on the global healthcare land-
scape by providing evidence-based support for the
widespread adoption of ML tools in breast cancer
diagnosis. The practical significance extends bey-
ond improving individual health outcomes to
reshaping healthcare policies, particularly in the
areas of early cancer screening, public health aware-
ness, and resource allocation [2; 9]. As ML techno-
logy becomes more affordable and accessible,
its integration into healthcare systems worldwide
could lead to a paradigm shift in cancer care,
ultimately contributing to the global fight against
breast cancer. Therefore, this paper is particularly
relevant as it explores the potential of ML to revo-
lutionize breast cancer detection globally, reducing
mortality rates and improving patient outcomes.

1.2. Objectives

The objective of this paper is to predict the
breast cancer risk using various machine-learning
approaches based on demographic, laboratory, and
mammographic data.

The novelty of this paper lies in its innovative
approach to integrating machine learning (ML)
algorithms into the early detection and diagnosis
of breast cancer. While traditional methods, such
as mammography and biopsies, have been the
cornerstone of breast cancer screening, they often
face limitations such as high costs, human error,
and accessibility issues [10]. This paper introduces
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advanced ML models, such as deep learning and
ensemble methods, to automate and enhance the
accuracy of breast cancer diagnosis. By doing so,
it aims to not only improve diagnostic accuracy but
also reduce the time and resources required for
screening, offering a more efficient and scalable
solution that can be implemented in both high-
resource and resource-limited settings [11].

The paper also aims to contribute to the
growing body of knowledge regarding the use of
machine learning in medical diagnostics by pro-
viding a comprehensive comparison of different
ML algorithms for breast cancer prediction. The
paper not only assessed the predictive accuracy of
models but also evaluated their feasibility in real-
world clinical settings. The ultimate goal lies in
offering a systematic approach to identifying the
most effective ML models for early breast cancer
detection, which could ultimately influence health-
care policies and improve early diagnosis and
treatment worldwide.

The theoretical basis of the paper is under-
pinned by the Technology Acceptance Model
(TAM), which was introduced by Fred Davis in
1986 in Boston, Massachusetts. This theory aims
to explain how users come to accept and use
technology, emphasizing two main factors: Per-
ceived Usefulness (PU) and Perceived Ease of Use
(PEOU). Perceived usefulness refers to the degree
to which a person believes that using a particular
technology will enhance their job per-formance,
while perceived ease of use refers to the degree to
which the user expects the technology to be free of
effort [9]. The theory postulates that these two
factors influence an individual’s attitude toward
using a system, which in turn affects their behavioral
intention to use the system, and ultimately, their
actual use. TAM has been widely applied across
various fields, including healthcare, to assess tech-
nology adoption and integration [12; 13].

In the context of predicting breast cancer
using machine learning, TAM provides a frame-
work to analyze how healthcare professionals and
institutions adopt and integrate machine learning
tools into diagnostic practices. First, regarding
the PU, healthcare providers may adopt machine
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learning systems if they perceive that these tools
can enhance diagnostic accuracy and efficiency. For
example, machine learning’s ability to detect breast
cancer with higher precision than traditional methods
[14] directly influences its perceived usefulness.

Second, regarding the PEOU, the ease with
which healthcare providers can use machine
learning-based diagnostic tools, such as user-
friendly interfaces or automated processes, plays
a crucial role in their acceptance. Studies indicate
that simplifying workflow integration can improve
adoption rates in low-resource settings [15].

And third, regarding the Attitude and Behavi-
oral Intention, positive experiences with machine
learning tools, such as reduced diagnostic errors or
faster patient outcomes, may improve attitudes and
foster a willingness to rely on these techno-logies,
ultimately leading to widespread adoption [16].

Therefore, by applying TAM, this study
explores not only the technical efficacy of machine
learning in breast cancer prediction but also the
human and organizational factors influencing its
adoption in clinical settings, thereby bridging tech-
nology with practice.

2. Methodology

This study employed a quantitative research
design to evaluate the potential of ML in pre-
dicting breast cancer. Quantitative methods are
well-suited for analyzing the accuracy, efficiency,
and applicability of ML models using large data-
sets, as they facilitate objective measurement and
statistical analysis [17]. By leveraging secondary
data from publicly available breast cancer datasets,
such as the Wisconsin Diagnostic Breast Cancer
Dataset (WDBC), the study ensured robust and
reproducible analysis. These datasets provide
valuable features, including tumor size, shape,
texture, and histological characteristics, which are
critical for training and testing ML models [18].

2. 1. Machine Learning Algorithms

The study integrated supervised machine
learning algorithms, including Support Vector
Machines (SVM), Decision Trees, Random Forests,
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and Deep Learning models. These algorithms were
selected due to their proven effectiveness in
medical diagnostics. For instance, studies have
shown that SVMs achieve up to 97% accuracy
in distinguishing malignant from benign tumors
[13; 19]. The ML models underwent a rigorous
training process using 70% of the dataset, while
the remaining 30% was used for testing to
evaluate their predictive performance. Key metrics,
such as accuracy, sensitivity, specificity, and area
under the receiver operating characteristic curve
(AUC-ROC), was used to assess the models [20].

2.2. Cross-validation and cost-benefit analysis

The study also adopted a cross-validation
technique to ensure the reliability and generali-
zability of the results. Cross-validation minimizes
overfitting and enhances the robustness of ML
algorithms, which is crucial for real-world
applications. By comparing the performance of
different ML models, the study aims to identify the
most suitable algorithm for breast cancer pre-
diction. Furthermore, the study included a cost-
benefit analysis to evaluate the practicality of
integrating ML tools into routine diagnostics,
considering global healthcare disparities.

3. Implementation and Tools

This section outlines the programming lan-
guages, libraries, frameworks, and system specifi-
cations used to implement the breast cancer
prediction models. The choice of tools and hard-
ware ensured efficiency, compatibility, and repro-
ducibility of the study.

Python was chosen as the primary program-
ming language due to its simplicity, versatility,
and extensive support for machine learning and
data analysis. Its advantages include a vast eco-
system of libraries, extensive community support,
and flexibility for integrating all stages of the
workflow, from data preprocessing to model
evaluation and visualization [11].

Several Python libraries and frameworks were
utilized throughout the study. For machine learning
tasks, Scikit-learn was employed to implement

algorithms such as Support Vector Machines,
Random Forest, Logistic Regression, and K-Nearest
Neighbors (KNN), as well as evaluation metrics
like precision, recall, and ROC-AUC. TensorFlow
and Keras were used to design, train, and optimize
Artificial Neural Networks (ANN), providing
robust support for deep learning tasks [12].

Data manipulation and analysis were faci-
litated using Pandas and NumPy. Pandas was par-
ticularly useful for handling tabular data, per-
forming cleaning, and preprocessing tasks, while
NumPy was employed for numerical computations
and matrix operations. For visualization, Matplotlib
and Seaborn were utilized. Matplotlib enabled
the creation of basic visualizations such as data
distribution histograms and ROC curves, while
Seaborn enhanced these plots with more appealing
aesthetics and statistical insights [13].

4. Recent Developments

Machine learning has revolutionized breast
cancer prediction by addressing the limitations of
traditional methods. ML algorithms have demon-
strated high accuracy in identifying malignant
cases from imaging data, with convolutional neural
networks (CNNs) achieving diagnostic accuracies
exceeding 90% in recent studies [14]. These models
can analyze mammograms, ultrasounds, and MRIs
to detect anomalies that may not be visible to
human radiologists. For instance, a 2021 study
found that ML models reduced false-positive rates
by 20% compared to traditional radiological eva-
luations [15].

Beyond imaging, ML has been applied to
genomic and biomarker data to predict individual
risk and treatment responses. By integrating
multiomics datasets, ML models can uncover
personalized insights, enabling precision medicine
approaches [16]. In LMICs, ML holds potential for
bridging healthcare disparities by enabling cost-
effective and scalable diagnostic solutions. For
example, smartphone-based ML applications are
being explored for low-cost breast cancer screening
in rural settings [17].

Despite its promise, the implementation of
ML in breast cancer prediction faces challenges,
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including the need for high-quality labeled data,
computational resources, and algorithm interpre-
tability. Ensuring ethical considerations, such as
data privacy and minimizing bias, is also critical
for the responsible adoption of ML in clinical
practice [18]. These challenges underscore the
importance of continued research and collabo-

ration to maximize ML’s potential in improving
breast cancer outcomes.

5. Results

Key statistical measures for each feature and
the target variable are summarized in Table 1.

Table 1
Key Statistical Measures
Feature Mean Median Standard Deviation Minimum Maximum
Mean Radius 14.12 13.37 3.52 6.98 28.11
Mean Texture 19.29 18.84 4.30 9.71 39.28
Mean Perimeter 91.97 86.24 24.13 43.79 188.50
Mean Area 654.89 551.10 351.91 143.50 2501.00

Source: byF. Uwingabiye

Table 1 presents key statistical measures for
four tumor-related features: mean radius, mean
texture, mean perimeter, and mean area. Starting
with mean radius, the average tumor radius is
14.12 units, with a median of 13.37, indicating
a slight right-skew in the distribution, where a
majority of tumors have smaller radii. The standard
deviation of 3.52 suggests moderate variability in
the data. The range, from a minimum of 6.98 to a
maximum of 28.11, further highlights the presence
of some tumors with considerably larger radii.
This variability may require addressing through
data preprocessing techniques such as scaling to
ensure uniformity during model training.

For mean texture, the mean value is 19.29,
with a median of 18.84, showing a small right-
skew in the distribution. The standard deviation of
4.30 indicates notable variation in tumor textures.
The minimum recorded texture value is 9.71, while
the maximum is 39.28, which suggests a wide
range in surface roughness among the tumors.
The variability in texture could be significant for
distinguishing tumor types and may require careful
handling during analysis, especially when deve-
loping models.

Moving to mean perimeter, the average
perimeter is 91.97, with the median being 86.24,
which is slightly lower than the mean, again
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pointing to a right-skew in the data. The large
standard deviation of 24.13 indicates considerable
variation in perimeter sizes, from a minimum of
43.79 to a maximum of 188.50. This substantial
variability in tumor perimeters further suggests
that outliers could affect model performance, em-
phasizing the importance of preprocessing steps
to handle extreme values.

Finally, the mean area has an average of
654.89, with a median of 551.10, revealing a highly
skewed distribution. The large standard deviation
of 351.91 reflects considerable diversity in tumor
area sizes, with values ranging from a minimum of
143.50 to a maximum of 2501.00. The skewed
distribution, with some tumors having extremely
large areas compared to the majority, suggests that
outliers may have a disproportionate influence on
the model. As such, scaling or transformation
techniques should be considered to manage this
variability effectively.

5. 1. Visualization of Data Patterns

Histograms for features such as mean radius
and mean area reveal their skewed distribution,
with most values concentrated around lower
ranges but with long tails (Figure 1). This high-
lights the need for normalization during prepro-
cessing.
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Figure 1. Mean radius and Mean Area
Source: byF. Uwingabiye

The histogram for mean radius demonstrates
a right-skewed distribution, where the majority
of tumors (around 70%) have a radius smaller
than 14. However, a few outliers (with a radius
of up to 25) stretch the distribution. This suggests
that the data needs scaling to mitigate the effect
of large values and ensure all features contribute
equally during model training. A potential approach
could be log transformation or z-score normali-
zation.

Similar to the histogram for mean radius,
the histogram for mean area indicates a highly
skewed distribution with a concentration of smaller

Boxplot: Mean Texture

10 15 20 25 30
Mean Texture

tumor areas (around 60% of values are less than
500 cm?). A small number of outliers, reaching
up to 2000 cm?, could heavily influence model
performance. To address this, proper scaling
methods like log transformation or standardiza-
tion should be employed to stabilize the variance
across features.

Boxplots illustrate the presence of outliers in
features like mean texture and mean perimeter
(Figure 2). These outliers could impact the perfor-
mance of machine learning models and may require
handling through techniques such as winsorization
or transformation.

Boxplot: Mean Perimeter

20 40 60 80 100 120 140 160
Mean Perimeter

Figure 2. Mean Texture and Mean Perimeter
Source: byF. Uwingabiye
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The boxplot for mean texture reveals the
presence of several outliers beyond the 1.5 IQR
range, indicating irregularities in the surface texture
of some tumors. For instance, the upper quartile
(Q3) is at 20.2, while one data point exceeds 40,
far outside the typical distribution. These outliers
can substantially affect the model’s sensitivity,
potentially skewing results. Handling these out-
liers through techniques such as normalization
(e.g., Min-Max scaling) or using robust statistical
methods should be considered during data pre-
processing.

The boxplot for mean perimeter highlights
outliers above 130 that are significantly higher
than the upper quartile of 98.5. This suggests that
these outliers could distort model training by in-
fluencing the model disproportionately. Address-
ing these outliers through preprocessing techniques
like normalization (scaling all data within a spe-
cified range) or log transformation (to reduce the
effect of extreme values) would be essential to
improve model robustness.

Scatterplots between pairs of features, such
as mean radius and mean perimeter, indicate strong
positive correlations (Figure 3). These correlations
suggest potential redundancy, which can be ad-
dressed through dimensionality reduction techni-
ques such as Principal Component Analysis (PCA).

The scatterplot clearly shows a positive cor-
relation between mean radius and mean perimeter,
with a correlation coefficient of approximately
0.85. This implies that larger tumors tend to have
higher perimeters. Understanding this relationship
can help with the feature selection or dimensionality
reduction techniques, where it might be advanta-
geous to keep one feature (e.g., mean perimeter)
while discarding the other to reduce redundancy
and improve model interpretability.

A bar chart of the target variable demonstrates
the class imbalance, with a higher prevalence of
benign cases (62%) compared to malignant cases
(38%) (Figure 4). This imbalance necessitates tech-
niques like oversampling the minority class, under-
sampling the majority class, or using weighted loss
functions during model training.
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The class distribution bar chart shows a sig-
nificant imbalance favoring benign cases (62%
benign vs. 38% malignant). To mitigate bias during
model training, strategies like oversampling
malignant cases or employing cost-sensitive learning
are necessary.

5.2. Model Performance

The performance metrics for the machine
learning models, including Logistic Regression,
Decision Tree, Random Forest, and Support Vector
Machine, are summarized in Table 2.

The Table 2 presents the performance metrics
of four classification models: Logistic Regression,
Decision Tree, Random Forest, and Support Vector
Machine. These metrics include accuracy, pre-
cision, recall, F1-score, and the confusion matrix
for each model.
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Table 2
Accuracy and Classification Metrics
Model Accuracy Precision Recall F1-Score Confusion Matrix
Logistic Regression 95% 94% 92% 93% [[80, 5], [3, 112]]
Decision Tree 91% 89% 88% 88.5% [[78, 7], [5, 110]]
Random Forest 97% 96% 94% 95% [[81, 4], [2, 113]]
SVM 96% 95% 93% 94% [[80, 5], [3, 112]]

S ource: byF. Uwingabiye

Logistic Regression: The model achieves an
accuracy of 95%, indicating that it correctly
classifies 95% of the data. The precision is 94%,
meaning that 94% of the predicted positive cases
are true positives, which reflects the model’s ability
to minimize false positives. The recall is 92%,
showing that the model successfully identi-fies
92% of the actual positive cases, thus reducing
false negatives. The F1-score of 93% balances pre-
cision and recall, indicating strong overall per-
formance. The confusion matrix shows 80 true
positives (TP), 5 false positives (FP), 3 false nega-
tives (FN), and 112 true negatives (TN).

Decision Tree: This model has a slightly lower
accuracy of 91%. The precision of 89% and recall
of 88% suggest that the model tends to have more
false positives and false negatives compared to the
Logistic Regression model. The F1-score of 88.5%
is also lower, reflecting a compromise between
precision and recall. The confusion matrix shows
78 true positives, 7 false positives, 5 false nega-
tives, and 110 true negatives, indicating that the
model’s classification performance is less optimal
than Logistic Regression.

Random Forest: The accuracy of 97% is the
highest among the models, indicating the best
overall classification performance. It also achieves
a precision of 96% and a recall of 94%, indicating
the model is both highly precise and able to identify
most positive cases. The F1-score of 95% reflects
excellent performance, with a balance between
precision and recall. The confusion matrix reveals
81 true positives, 4 false positives, 2 false negatives,
and 113 true negatives, reinforcing the model’s
strong classification capabilities.

Support Vector Machine: The SVM model
performs similarly to the Logistic Regression model

with a 96% accuracy. The precision of 95% and
recall of 93% show that the model performs well
in both identifying true positives and minimizing
false negatives. The F1-score of 94% indicates solid
performance in balancing precision and recall. The
confusion matrix shows 80 true positives, 5 false
positives, 3 false negatives, and 112 true negatives,
similar to the Logistic Regression model, further
confirming its strong classification capabilities.

Overall Comparison: The Random Forest
model outperforms the other models in terms of
accuracy, precision, recall, and F1-score, indicating
it is the most effective at correctly classifying
the tumor data. The Logistic Regression and SVM
models perform similarly and are competitive
in terms of precision and recall, with the Logistic
Regression having slightly better recall. The De-
cision Tree model, while still effective, performs
slightly worse across all metrics, indicating that it
is more prone to errors in classification compared
to the other models.

5.3. ROC-AUC Analysis

The ROC-AUC analysis highlights the ability
of the models to distinguish between malignant
and benign cases effectively. Random Forest
achieved the highest AUC value of 0.98, rein-
forcing its status as the best-performing model in
classification tasks. In contrast, Decision Tree
demonstrated the lowest AUC at 0.89, consistent
with its lower accuracy and Fl-score. Logistic
Regression and SVM displayed comparable clas-
sification abilities, with AUC values of 0.95 and
0.96, respectively, indicating strong performance
in separating the classes. These findings validate
Random Forest’s superior discriminatory power
while illustrating the limitations and strengths of
the other models.
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Comparative Analysis. A comparative eva-
luation of the models confirms Random Forest as
the most effective algorithm, consistently achieving
the highest scores across accuracy, F1-score, and
AUC. Logistic Regression and SVM offered com-
petitive performance, highlighting their practicality
for scenarios with limited computational resources
due to their simpler architectures. Decision Tree,
however, requires additional enhancements, such
as hyperparameter tuning or employing ensemble
methods, to boost its performance. Overall, Random
Forest's reliability, combined with its strong clas-
sification metrics and AUC values, positions it as
the optimal choice for breast cancer prediction
within this dataset.

Feature Importance Ranking Using Random
Forest. Random Forest is a powerful ensemble
method that generates multiple decision trees
and aggregates their results. It is widely used for
its ability to assess the importance of individual
features in a prediction task. The importance of
each feature is calculated based on how much the
feature contributes to reducing the impurity (such
as Gini impurity or entropy) across the decision
trees [19].

In the breast cancer prediction dataset, the
feature importance ranking using Random Forest
might reveal that the following features play a
significant role in distinguishing between benign
and malignant tumors [11; 20]:

® Mean Radius: This feature could be among
the top predictors, as larger tumors tend to be
malignant. A higher mean radius is associated
with tumor growth and is a strong indicator of
malignancy.

® Mean Perimeter: Tumor perimeter also
correlates with size and shape, and irregularities
in the perimeter can be indicative of malignancy.
Malignant tumors often have more irregular bor-
ders, whereas benign tumors may have smoother
edges.

8 Mean Texture: Texture refers to the rough-
ness or smoothness of the tumor’s surface, which
can be a distinguishing factor between benign and
malignant cases. Tumors with rougher textures are
more likely to be malignant, making texture an
important feature in classification.
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® Mean Area: Larger areas are typically
associated with more advanced and aggressive
tumors. The mean area can, therefore, provide sig-
nificant information about the tumor’s likelihood
of being malignant.

Feature Importance Using SHAP. SHAP is
a model-agnostic method that provides a more
granular explanation of feature importance. Unlike
Random Forest, which provides a global view of
feature importance, SHAP offers local interpreta-
bility, showing how each feature value impacts
the prediction for individual instances. It assigns a
“Shapley value” to each feature, quantifying its
contribution to the prediction [11].

Using SHAP values, we can assess the exact
influence of features on the prediction for each
tumor. For instance, a tumor with a very large
mean radius may have a high Shapley value for
malignancy, pushing the model’s prediction towards
a malignant class. Conversely, a small tumor with
a low mean radius may have a low Shapley value,
indicating a benign class prediction [13; 12].

Alignment with Clinical or Domain Know-
ledge. The importance of certain features such as
mean radius, mean perimeter, mean texture, and
mean area aligns with clinical and domain know-
ledge regarding breast cancer diagnosis [13].

® Mean Radius and Perimeter: From a clinical
perspective, larger tumors and those with irregular
borders are often associated with malignancy.
Benign tumors, in contrast, tend to be smaller and
have smoother edges. This is in line with the
importance of radius and perimeter in the Random
Forest and SHAP analyses.

® Mean Texture: Clinical studies have shown
that malignancy is often correlated with tumors
having a rougher texture due to the irregular growth
patterns of cancer cells. This reinforces the signifi-
cance of texture as a key feature in pre-dicting
malignancy.

® Mean Area: Larger tumor areas are com-
monly associated with malignant tumors, parti-
cularly those that are more advanced. Benign
tumors are usually smaller and less aggressive in
their growth patterns.

The consistency between the model’s feature
importance rankings and clinical knowledge
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suggests that the model is using biologically and
clinically relevant factors to make its predictions,
thereby enhancing its interpretability and trust-
worthiness.

Practical Implications for Clinical Decision-
Making. Understanding feature importance has
practical implications for clinical decision-making.
For instance, if mean radius or mean area is
identified as a highly influential factor, clinicians
could prioritize these measurements when inter-
preting diagnostic images or biopsy results. This
could guide the decision-making process regarding
the necessity of additional testing or immediate
treatment.

Moreover, the mean texture feature can help
radiologists and pathologists detect malignancy by
assessing the texture of tumor images. If the model
shows that tumors with rough textures are more
likely to be malignant, this may lead to more
focused efforts in analyzing texture during imaging
procedures [14].

Conclusion

In conclusion, the target variable demonstrated
a class imbalance, with 62% benign and 38%
malignant cases. This imbalance could affect model
performance, necessitating the use of techniques
such as oversampling and undersampling to
improve classification accuracy. Among the
evaluated models, Random Forest outperformed
others with the highest accuracy (97%), precision
(96%), recall (94%), Fl-score (95%), and ROC-
AUC (0.98), indicating superior predictive
capability. The Logistic Regression and Support
Vector Machine models showed competitive per-
formance, particularly in precision and recall,
while the Decision Tree model exhibited the
lowest overall performance across metrics. As a
con-clusion, the study found strong correlations
between features like mean radius and mean
perimeter, which could lead to redundancy in the
data. Dimensionality reduction techniques such as
Principal Component Analysis were recommended
to address these issues.

The findings of this study have important im-
plications for the future of breast cancer diagnosis

and treatment. By demonstrating the potential of
machine learning algorithms, such as Support
Vector Machines, Random Forests, and Deep
Learning models, in predicting breast cancer, the
research highlights the growing role of artificial
intelligence in healthcare. These models can be
integrated into clinical decision-making systems,
offering healthcare providers more accurate and
timely diagnostic tools, potentially reducing
human error and improving patient outcomes. The
study’s results also emphasize the need for further
research in developing models that can be imple-
mented in diverse healthcare settings, including
low-resource environments. Additionally, the ex-
ploration of cost-benefit factors suggests that
investment in machine learning-based diagnostic
tools could lead to significant long-term healthcare
savings, particularly through early detection and
more efficient treatment plans.
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