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Abstract. Head and neck squamous cell cancer (HNSCC) is the seventh most common malignancy in the world. The
overall incidence of HNSCC is increasing and is projected to increase by about 30 % annually by 2030. Clinically, HNSCC is
characterized by an aggressive course: rapid local spread, resistance to various methods of antitumor treatment, and frequent
recurrences. Despite improvements in diagnostic and therapeutic approaches over the last two decades, the outcomes of patients
with HNSCC have not shown significant improvements, especially for patients with late TNM stage, with an overall five-year
survival rate of 50 %. Approximately 75 % of HNSCC patients are treated with radiation therapy either alone or as part of
a comprehensive treatment regimen. To date, one of the main ways to improve the efficacy of radiation therapy in HNSCC is
considered to be a combination of maximum allowable increase of radiation dose in the target tumor and minimization of such
dose in the surrounding healthy tissues. From this point of view, proton therapy (PT) has a pronounced advantage over various
types of photon irradiation. Despite the growing interest of scientists in PT, studies aimed at identifying molecular and genetic
changes induced by PT are sparsely, while in our opinion they are very important for understanding intracellular mechanisms
leading either to tumor cell destruction or to the development of radioresistance. This review summarizes the available knowledge
on the changes in the main signaling pathways of HNSCC tumor cells under the influence of PT.

Keywords: head and neck squamous cell cancer, proton therapy, protons, signaling pathways, signaling cascade, molecular
genetic signatures
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Introduction

Head and neck squamous cell cancer (HNSCC)
is the seventh most common malignancy in the world.
The overall incidence of HNSCC is increasing and is
projected to increase by about 30 % annually by 2030 [1,
2]. The most significant risk factors for the development
of HNSCC include smoking, alcohol consumption,
exposure to environmental pollutants, and infection with
viral agents, namely human papillomavirus (HPV) and
Epstein-Barr virus [3], additional predisposing factors
include betel nut chewing (a species of tree-like plants of
the genus Areca of the Palm family, the use of which is
common in Southeast Asian countries), malnutrition, poor
oral hygiene [4, 5]. Clinically, HNSCC is characterized
by an aggressive course: rapid local spread, resistance
to various methods of antitumor treatment and frequent
recurrences [6]. Despite improvements in diagnostic and
therapeutic approaches over the last two decades, mainly
due to the respective heterogeneity of these tumors, the
outcomes of patients with HNSCC have not shown
significant improvements, especially for patients with
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late TNM stage, with an overall five-year survival (OS)
of 50 % [7]. Therapeutic options for HNSCC include
minimally invasive, organ-preserving surgery, radiation
therapy (RT), and multimodal treatment strategies. For
patients with early-stage HNSCC, both surgery and
intensive RT provide comparable results in terms of local
disease control and overall survival [8]. After surgery,
postoperative RT with or without adjuvant chemotherapy
is recommended for patients with risk factors including
perineural invasion and/or lymphovascular invasion and
when positive resection margins (i.e., resection margins
with tumor cells detected in them) are identified. As
arule, a combination of surgery, RT and chemotherapy
is required at advanced stages (locally advanced stage, or
in the presence of distant metastases) [9]. Approximately
75 % of HNSCC patients are treated with RT as the main
or as part of complex treatment [10]. Thus, in the early
stages of the disease, RT can replace the need for surgical
intervention. In some complex clinical situations, for
example, for tumor lesions of the larynx, RT allows
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to perform antitumor treatment while preserving the
organ, which is a fundamentally important aspect
from the psychological point of view for a number of
patients [11]. However, the planning and implementation
of RT in patients with HNSCC is complicated due to
the close proximity of a large number of critical organs
at risk (OAR). Even with the introduction of Intensity
Modulated Radiation Therapy (IMRT) in the clinic, it
is not possible to completely avoid irradiation of nearby
organs, which subsequently leads to the development
of late postradiation complications [12, 13]. To date,
one of the main ways to improve the efficacy of RT in
HNSCC is considered to be a combination of maximum
permissible increase of radiation dose in the target tumor
and minimization of such dose in the surrounding healthy
tissues. From this point of view, proton therapy (PT)
has a pronounced advantage over various types of
photon irradiation. [14, 15]. A number of studies have
demonstrated a significant reduction in the radiation dose
to OAR with PT compared to IMRT [16-18].

PT is a promising variant of RT, the wide application
of which is expected to solve many problems [19].
Protons are positively charged particles that penetrate

tissue to a limited depth and give up most of their energy
at the end of their path [20]. This physical phenomenon
of protons has been called the Bragg peak [21]. The
pronounced peak of ionizing radiation, or Bragg peak,
occurring at the end of the protons’ run through matter
causes that the integral dose is almost always lower
and the irradiation of healthy tissues is less than in
photon therapy [22]. Due to such a dose distribution
in the substance, it is possible to carry out irradiation
with high effective doses against the background of
a reduced radiation load on the surrounding healthy
tissues, which improves the tolerability of treatment
and reduces the number of postradiation complications
in HNSCC patients.

The main effect of protons on tumor cells is DNA
damage, including nucleotide base modifications,
a basic sites and single-strand breaks, the latter being
the most common type of PT-induced direct damage. In
addition to direct damage, PT has an indirect cytotoxic
effect through the formation of reactive oxygen
species (ROS) [23], which activate caspases to induce
apoptosis [24], (Fig.1). In a past review article, we noted
the biological effects of PT [25], (Table 1).

Figure 1. Proton therapy effects on cancer cells
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Table 1

Specific features of proton therapy

Evaluation parameters

Peculiarities of proton therapy

Physical properties

Protons emit maximum energy, reaching the “target”, i. e. the tumor; while the
surrounding tissues (healthy) receive minimal radiation dose [23], [26].

Cancer cell DNA

Proton irradiation induces clustered DNA damage, with the formation of short DNA
fragments that are difficult to repair by the repair mechanism, leading to massive
cell death [27].

Action on tumor

Cancer cells as a whole

Proton irradiation leads to the accumulation of ROS, which in turn activate caspases
that trigger cancer cell apoptosis [28].

It reduces invasion and migration of cancer cells by inhibiting integrins and matrix
metalloproteinases (MMPs) [29].

Cancer-associated
fibroblasts

It reduces protumorigenic properties and induces rapid senescence of cancer-
associated fibroblasts [30].

Tumor microenvironment Macrophages

Proton irradiation stimulates reprogramming of M2 macrophages possessing a
pro-tumor phenotype into M1 antitumor ones through activation of NFkB, MAPK
and IRF/STAT [31].

It activates the expression of high mobility group box 1 (HMGB?1), which is responsible
for the activation of antigen-presenting cells [32].

T-lymphocytes

Proton irradiation activates the recruitment of CD8+ [33], CD4+ and T-reg
lymphocytes [32].

Despite the growing interest of scientists in PT, destruction or the development of radioresistance [34].
studies aimed at identifying molecular and genetic In this review, we summarize the available knowledge of
changes induced by PT are scarce, whereas in our the changes in the main signaling pathways of HNSCC
opinion they are very important for understanding the tumor cells under the influence of PT (Fig.2).
intracellular mechanisms leading to either tumor cell

Figure 2. Impact of proton irradiation on cancer cell signaling pathways
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P53 signaling pathway

HNSCC is characterized by a high level of genetic
instability [35], which is primarily due to inactivating
mutations in tumor growth suppressor genes [36].
Like most solid tumors, HNSCC is characterized by
mutations in the TP53 gene, [37] which in “normal”
mode of operation provides genomic stability and in
case of detecting violations is able to stop the cell cycle
and start the process of DNA repair, and in case of
impossibility to correct the damage — starts apoptosis
[38, 39]. The hallmark of p53 is high sensitivity to
DNA damage or oncogene activation in the cell [40].
Inactivating mutations of TP53 are characteristic of
more than 80 % of HPV-negative HNSCC, which
necessarily lead to loss of its function [41]. Inactivating
mutations in the TP53 gene are events of early stages
of carcinogenesis. The presence of TP53 mutations in
any subtypes of HNSCC is associated with poor overall
survival, resistance to therapy, and increased recurrence
rates [41]. Talking about RT-induced changes in the
TP53 gene, it is important to note that it is assigned
one of the main roles in deciding the “fate” of cancer
cells after irradiation. In several studies [42, 43, 44] it
has been demonstrated that under the influence of RT,
tumor cells die by apoptosis rather than by necrosis or
autophagy. Radiation exposure increases the amount of
p53 protein in cells, mainly by stimulating its translation
and inhibiting its degradation [45].

Activation of the p53-mediated signaling pathway
can cause cell cycle arrest followed by DNA repair,
which promotes cell survival; if DNA repair is not
possible, apoptosis is induced or the cell becomes
senescent, which ultimately leads to tumor cell
death [44]. Bravata et al. showed on breast cancer cell
lines that proton irradiation leads to TP53 pathway
activation [46]. Lee et al. demonstrated on the example
of three kinds of cancer cells, lewis lung carcinoma
cells, hepatoma HepG2 and Molt-4 leukemia cells, that
proton irradiation induces an increase in p53 expression
with subsequent apoptosis of cancer cells [47]. Taking
into the consideration that HNSCC is characterized
by a high level of hypoxia (like the above tumors) in
the tumor node, similar activation of p53-dependent
signaling pathway is likely to occur in this MNs. In
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addition, proton irradiation activates caspases and
increases the generation of ROS via p53. The increase
of ROS can activate p53 and vice versa according to
the feedback principle [43].

EGFR signaling pathway

A well-known molecular genetic feature of HNSCC
is the overexpression of a receptor with tyrosine kinase
activity-epidermal growth factor receptor (EGFR)
[48]. Thus, EGFR overexpression is thought to be
found in approximately 80 % of HNSCC cases, and
in terms of disease course, it is associated with a poor
prognosis of the disease [49]. The prevalence of EGFR
overexpression has led to the introduction of Cetuximab,
a targeting drug that is a monoclonal antibody directed
against EGFR, into the antitumor therapy of HNSCC.

HER family ligands including epidermal growth
factor, heparin-binding, amphiregulin, transforming
growth factor-alpha, epiregulin and beta-cellulin have
affinity for EGFR. [50]. Upon binding to one of the
ligands, activated EGFR activates various intracellular
signaling cascades, e.g., JAK/STAT, PI3K/AKT,
MAPK [51]. In cancer cells, these signaling cascades
are responsible for the processes of cell proliferation,
invasion, migration and metastasis [52].

Despite its transmembrane position, EGFR is
able to move into the cell nucleus where it functions
as a transcription factor. Such a phenomenon can be
induced by ionizing radiation and it is associated with the
acquisition of resistance to RT by cancer cells. In turn,
EGFR inhibition sensitizes radioresistant cancer cells by
modulating DNA repair. Overexpression of other receptor
tyrosine kinases including HER2 and MET contribute to
resistance to agents targeting EGFR [53, 54].

A study by Park et al. demonstrated the efficacy of
combining the EGFR inhibitor Gefinitib with proton
irradiation on non-small cell lung cancer cells [55].
Promising results were obtained when oral squamous
cell carcinoma’s cells were irradiated with protons:
EGFR suppression was revealed [56]. Irradiation with
another type of corpuscular irradiation, carbon ions,
also led to a decrease in the activity of EGFR and PI3K/
AKT/mTOR pathways [57]. In contrast, Stahler et al.
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did not observe activation of EGFR and downstream
targets AKT and ERK1/2 after carbon ion irradiation
in their experiment [58].

MET signaling pathway

The MET proto-oncogene encodes RTK and is
a regulator of one of the most important signaling
cascades of carcinogenesis, primarily causing epithelial-
mesenchymal transition (EMT) [59]. In turn, EMT
enhances cancer cell migration and invasion and thereby
determines the process of metastasis in HNSCC [54].
Although c-MET has several functional domains, it
binds to a single ligand-hepatocyte growth factor (HGF)
[60]. The binding of HGF to c-MET affects the catalytic
activity of RTC, which activates other cell signaling
pathways such as RAS/RAF/ERK, PI3K/AKT/mTOR,
JAK/STAT and NOTCH, resulting in uncontrolled
proliferation of cancer cells [61]. In HNSCC, MET
mutations are infrequent, occurring in approximately
2-13 % of cases, whereas MET copy number increase
and overexpression of its ligand HGF are common
[62] and are associated with poor prognosis and poor
overall survival [63]. Increased expression of c-MET is
associated with metastasis to lymph nodes in HNSCC,
and overexpression of HGF is associated with resistance
to anoikis (a type of cell death) [64]. Activation of c-Met
promotes increased expression of plexin containing
domain 2 through activation of ERK1/2-ELK1 signaling.
This leads to cancer cell plasticity through the induction
of epithelial-mesenchymal transition and an increase
in the number of stem cells in the tumor, resulting in
RT resistance of HNSCC. Inactivation of c-Met by
knockdown or an inhibitory pharmacological agent not
only reverses the EMT process, but also diminishes the
CD44+CD133 — cancer stem cells (CSCs) population
in radioresistant HNSCC, which significantly slows
tumor progression [65].

In view of the fact that EGFR and c-MET activate
common downstream components of signaling cascades
such as MAPK and PI3BK/Akt/mTOR, the MET signaling
cascade may be considered as a promising target
for the treatment of HNSCC in cetuximab-resistant
patients [54]. In addition, this signaling pathway is
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believed to interact with other signaling pathways such
as STAT and Whnt, contributing to tumor progression and
resistance to antitumor agents and RT [66]. In writing
this review, we did not find any studies on how this
signaling cascade is altered after proton irradiation.
However, there are reports indicating that c-Met is
overexpressed in most HPV-negative HNSCC cell lines
after ionizing irradiation.

PI3K/Akt/mTOR signaling pathway

Disorders in the PI3K/AKT/mTOR signaling
cascade in HNSCC are common, occurring in 90 % of
cases [67]. The first constituent member of the signaling
cascade-PI3K, which belongs to a class of enzymes
that are essential for cell growth, differentiation, and
survival-is activated by RTKs (e.g., as mentioned
above, such as EGFR). Other members of the pathway
include mTORC1, mTORC2 and Akt. mTORC?2 is
required for phosphorylation of Akt and activation
of other signaling molecules of the PI3K pathway
[68]. Phosphorylated Akt activates mTOR or inhibits
Bad, caspase 9 and other proteins, thereby regulating
cell proliferation, differentiation, apoptosis and
migration. PI3K is thought to phosphorylate phos
phatidylinositol-4,5-bisphosphate and convert it to
another form, phosphatidylinositol-3, 4, 5-triphosphate
[69]. Phosphatidylinositol-3, 4, 5-triphosphate can
be dephosphorylated by phosphatase and tensin
homolog, which in turn blocks the PI3K/AKT/mTOR
pathway [70, 71].

Activation of this signaling cascade in HNSCC
cancer cells leads to the development of resistance
to antitumor therapies, especially RT [72], which is
associated with the induction of DNA repair [73]. After
PT, there is a decrease in AKT phosphorylation followed
by inhibition of signaling pathways, leading to decreased
radioresistance [74]. Carbon ion irradiation resulted in
decreased PI3K/AKT/mTOR activity in non-small cell
lung cancer cells [57]. The study conducted on the cell
line of glioblastoma multiforme U87 showed that proton
irradiation of tumor cells under conditions of acute
hypoxia leads to activation of the PI3K/AKT/mTOR
signaling pathway [75].
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JAK/STAT signaling pathway

Another signaling pathway associated with the
malignancy of HNSCC is JAK/STAT. A transmembrane
protein called Janus kinase (JAK) perceives information
from outside the cell and directs the signal inside the
cell by phosphorylating STAT, which is a transcription
factor. Activation of this signaling cascade is associated
with resistance to various anticancer treatment
approaches-chemotherapy, RT, and targeted therapy
[76, 77]. It is unusual that activation of the participants
of this signaling cascade is associated not only with
changes in cancer cells directly, but also in the tumor
microenvironment. For example, STAT3 activation leads
to changes in the tumor microenvironment: it acquires
immunosuppressive potential due to increased synthesis
of cytokines TGF-$1, IL-6, IL-10, and VEGF, which, in
turn, ensures tumor escape from recognition and lysis
by cytotoxic T-lymphocytes [78]. In vitro inhibition
of STAT3 has been shown to be associated with a less
pronounced development of immunosuppressive
potential of the HNSCC tumor microenvironment [79].
In contrast, STATS5 activation observed in HNSCC
correlates with increased cancer cell proliferation,
invasion and EMT activity [80]. In our recent study
on transcriptomic changes of HNSCC after PT, we
observed suppression of STAT5 activity [81].

MAPK signaling pathway

The mitogen-activated protein kinase (MAPK)
signaling cascade has an important regulatory function
in cancer cells. Such processes as proliferation
of cancer cells, their subsequent differentiation,
metastasis, and in addition the processes of
angiogenesis and resistance to antitumor treatment
are caused by the activation of the MAPK signaling
pathway [82]. The MAPK signaling pathway includes
RAS (H/K/NRAS), RAF (A-/B-/C-RAF), mitogen-
activated protein kinase (MEK, MEK1/2), extracellular
signal regulated kinases (ERK, ERK1/2), adaptor
molecules (GRB2, SHC1/2/3/4) and dual specificity
phosphatases (DUSP3/5/6/7/9), which are negative
regulators of ERK [83]. It has been demonstrated
that activation of several kinases, including BRAF,
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KRAS, HRAS and ERK1/2, induces carcinogenesis
and stimulates cancer cell invasion [84].

In HNSCC, mutations affecting members of
the MAPK signaling pathway occur in about 18 %
of cases [85]. These mutations are predominantly
localized in BRAF, HRAS, KRAS, and ERK genes
[86]; most of the mutations of the MAPK signaling
pathway in HNSCC are inducers of carcinogenesis. High
intratumoral expression of p-MAPK1/3 (p-ERK1/2) in
HNSCC patients correlates with low survival rates [87].

Hyperexpression of one of the participants of the
p38/MAPK signaling pathway, MAP2KS6, in patients
with HNSCC is associated with resistance to RT and
poor prognosis of the disease [88]. In a study by Meerz
et al., MAPK activation was detected in 3-D cell cultures
of HNSCC after proton irradiation. In addition, the
authors demonstrated radiosensitization of HNSCC
cells when combining PT with selective inhibitors of
key members of the MAPK pathway — for ERK1/2
(Ulixertinib); for JNK 1/2/3 (SP600125); for p38a/f/y/6
(Ralimetinib). The most pronounced radiosensitization
effect was demonstrated by a selective ERK1/2
inhibitor [89]. Another work devoted to the effects of
proton irradiation on the cell line of colorectal cancer,
which revealed the inhibitory effect of PT on MAPK
phosphorylation in cancer cells, is also noteworthy [90].

NOTCH signaling pathway

The NOTCH signaling cascade starts with 4
receptors (NOTCH1-4) to which 5 ligands (JAG1 and
2 and DLL1, 3 and 4) can bind. After ligand binding
to the NOTCH receptor, the y-secretase complex
releases an intracellular NOTCH domain called NICD.
NICD moves into the cell nucleus, which activates
transcription of NOTCH target genes -HES and
HEY [91]. A large-scale genomic analysis conducted in
2015 revealed that NOTCH 1-3 mutations are present
in 17 % of HPV-positive and 26 % of HPV-negative
HNSCC cases [41, 92].

An increase in the activity of NOTCH signaling
pathway participants was observed in HNSCC cells,
and their inhibition leads to a decrease in proliferation
and invasion of cancer cells [91]. Activation of the
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signaling pathway through NOTCH1 by Wnt-signaling
stabilizes the population of CSCs, which is associated
with frequent recurrences and active metastasis. Hovinga
et al. demonstrated that Notch inhibition significantly
improves response to radiation by reducing proliferation
and self-renewal of CSCs in tumor explants [93]. In
addition, survival of CSCs is maintained by activation
of Akt and STAT3, which are almost always activated
in cancer cells. These together account for tumor
radioresistance [94]. On human glioma cell lines it
was shown that carbon ion irradiation suppresses Notch
signaling at all levels of transcription and translation
of proteins participating in this pathway [95]. Proton
boron capture therapy in GBM cells induces a Notch
signaling activation, able to regulate cell fate through
the modulation of autophagy/apoptosis transition [96].

PDGF/PDGFR signaling pathway

The peculiarity of this signaling pathway is that
simultaneous expression of platelet-derived growth
factor (PDGF) and platelet derived growth factor
receptor (PDGFR) is observed in cancer cells, which
creates an autocrine loop that promotes aggressive
tumor behavior. The PDGF ligand family includes
several members: PDGFA, PDGFB, PDGFC, and
PDGFD, which form homo- and heterodimers [97].
Upon ligand binding to the receptor, intracellular
tyrosine kinases are activated and form multiple
binding sites for downstream signaling molecules,
thereby activating various signaling pathways such as
PI3K/Akt/mTOR signaling cascades, MAPK signaling
cascade, JAK/STAT and Notch signaling cascade [98].

The PDGF/PDGFR signaling pathway has been
assigned a major role in tumor progression [99]. PDGF
has been found to have a stimulatory effect on malignant
cell transformation, cancer cell migration, and cancer
cell survival [100, 98]. PDGF overexpression promotes
tumor cell growth [101] and induces angiogenesis [102],
affecting cells in the tumor microenvironment, thereby
provoking tumor progression and dissemination [103,
104]. In addition, there is evidence that increased PDGF
activity in tumors is associated with resistance to drug
treatment, which is associated with impaired blood flow
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in tumors due to increased interstitial fluid pressure
[105]. Aebersold et al. found that more than half of
tumor samples from 95 patients with oropharyngeal
cancer stained positive for PDGF-BB, and this was
associated with an increased risk of metastasis [106].
After proton irradiation suppression of this signaling
pathway was observed in HNSCC cells [81].

PD-1/PD-L1 signaling pathway

The PD-1/PD-L1 signaling pathway controls the
induction and maintenance of immune tolerance in the
tumor microenvironment [107]. PD-L1 is expressed
by tumor cells and endows them with the ability to
avoid an anti-tumor response by inhibiting activation
of T cells (which express the PD1 receptor), reducing
cytokine production, and inducing cytolysis of T cells.
[108, 109]. Primary tumors and metastases, particularly
in HNSCC, and even different regions of the same
tumor node can differ significantly in PD-L1 expression
levels [110, 111, 112]. There are conflicting data in
the literature regarding the prognostic value of PD-L.1
expression in HNSCC. A meta-analysis evaluating
PD-L1 expression and the association with survival
in HNSCC patients, found no significant difference in
overall survival between PD-L1-positive and -negative
patients [113]. Currently five monoclonal antibodies
targeting PD-1 and PD-L1 have been approved by the
FDA. Two of them target PD-L1, Atezolizumab and
Durvalumab, and Nivolumab, Pembrolizumab and
Cemiplimab target PD-1.

Proton irradiation of the KYSE450 (esophageal
squamous cell carcinoma) cell line increased PD-L1
expression [114]. The combination of RT with
immunotherapy for the treatment of HNSCC has long
attracted the attention of researchers. When RT is combined
with immune checkpoint inhibitors, it can potentiate
the synergistic effects, where RT contributes to the
normalization of the tumor vascular system, enhance the
expression of leukocyte adhesion molecules on endothelial
cells, and stimulate the secretion of chemokines that
attract CD8+ T cells [115]. And a recent study revealed
a synergistic effect of combining proton irradiation and
immunotherapy on mouse oral cancer cell lines [116].
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Conclusion

PT is a promising option for RT of HNSCC,
minimizing the number of post-radiation complications
and significantly improving the quality of life of
patients undergoing antitumor treatment. However,
radioresistance leads to treatment ineffectiveness in
some cases. In the course of writing this review article,
we encountered the fact that the described molecular-
genetic signatures of this malignancy are not few, but
they lack specificity, and the number of works devoted to
the description of PT effects at the level of intracellular
signaling pathways is limited. This determines the urgent
need to search for molecular genetic biomarkers to
predict response to PT. The understanding of molecular
genetic changes induced by PT in tumor cells of HNSCC
will allow to create effective combinations of antitumor
therapies to avoid radioresistance.
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AnHoranus. [110CKOKIeTouHbIH pak rosiossl U men (ITPT'III) 3aHMMaeT ceZibMoe MeCTO B /leCsSITKe Haubosiee pacripocTpa-
HEHHBIX 3/I0KaueCTBEHHBIX HOBOOOpa3oBaHuii B Mupe. OTMeuaeTcst pocT o0iieli 3aboneBaemocty TTPI'IL, 1 mporHo3upyeTcs,
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Y UaCThIMU peLiiZriBaMu. HecMOTps Ha yCOBepIIeHCTBOBaHUS [JUarHOCTUUYECKUX U TeparieBTUUeCKUX MOAX0/0B 3a Moc/eHUe
[IBa lecaTuneTys, ucxosl nanyeHToB c [TPTI, ocobeHHO ¢ MO3AHUMHU CTafUsIMU 3a00/IeBaHuUs, He YIyUIIWIUCh- UX 001as
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€aMOCTOSITe/ILHOTO W/IM B COCTaBe KOMIUIEKCHOTO jieueHusi. Ha cerofHAIIHNI JeHb OIHUM U3 OCHOBHBIX IyTell MOBBIIIEHUS
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KiroueBbIe c/10Ba: TJI0CKOK/IETOYHBIN paK rOMOBHI U 111eU, IIPOTOHHAs Teparisi, IPOTOHbI, CUTHA/IbHbIE Iy TH; CUTHATbHBIN
Kacka/; MOJIeKy/IIpHO-TeHeTUUeCK/e CUrHaTypPbl

HNudopmanus o puHaHcupoBanuu. Pabora BeINosiHeHa NIPY NO/|/IePyKKe TPEXCTOPOHHEro corviaiieHust Poccriickoro HayuHoro
tonzma Ne 24-24-00296 ot 29.12.2023 110 1IpOEKTY «BusiHYe IPOTOHHOM Teparyy Ha MOIEKY/ISIPHBII TTOPTPeT MUKPOOKPY>KEHHUST
OITyx0JIeli FOJIOBHI U Lien» KoHKypca 2023 roga «IIpoBesieHre ¢yHjaMeHTanbHBIX HayUHbIX WCC/e0BaHUN U IIOMCKOBBIX HayUHbIX
HCC/Ie/IoBaHWN MaJlbIMU OT/e/IbHBIMU HayYHbIMU Ipyrinamu» Mexay PH®, JloxonuHoii A.B. u PYIH.

ONCOLOGY 425


https://orcid.org/0000-0002-8226-0433
mailto:enar2017%40yandex.ru?subject=Enar%20D.%20Jumaniyazova
https://orcid.org/0000-0001-5064-219x
https://orcid.org/0000-0002-6182-1799
https://orcid.org/0000-0001-8077-2307
mailto:enar2017%40yandex.ru?subject=Enar%20D.%20Jumaniyazova

Icymanuasosa 3. [. u 0p. Becthuk PYJH. Cepusa: Menununa. 2024. T. 28. Ne 4

Bkiap aBTopoB. [I>xymaHussosa J. 1. — KOHLIeNLYsl U HalyMcaHue pyKOIMCH, COCTaB/leHue WuttocTpauuy; JloxonrHa A.B. —
MIPOBepKa UHTEJIEKTYa/IbHOTO COAlePXXUMOro pykornmcy; CeHtsiopeBa A.B. — Harnmcanve pykorvicy, KoceipeBa A.M. — npoBepka
VHTeJUIeKTYaIbHOTO COZIEP’KUMOT0 PYKOTIUCH. Bce aBTOPBI BHEC/TH CYIIIeCTBEHHBIN BK/IaZl B pa3pab0TKy KOHLIETILIMH, TIPOBe/IeHHe
WCCIIeJOBaHMs ¥ TIOATOTOBKY CTaThH, TIPOUIN M 0Z00pUIM (DMHATBbHYIO BEPCHIO Tiepe ImyOMKarpe.

HNudopmanys o KOHQINKTe HHTePeCcoB. ABTOPHI 3asiB/ISTFOT 00 OTCYTCTBUM KOH(JIMKTA HUHTEPECOB.
JTHUYeCKOe YTBep>KAeHHe — HelPUMeHHMO.

BaaropapHocTH. KosijieKTUB aBTOPOB TPUHOCUT OnarogapHocTb Kazapsiny I 3a TeXHUUeCKYIO TIO//IEP>KKY B TTpoLiecce
TOATOTOBKH PYKOITUCH.

HudopmupoBaHHoe coryacue Ha my0/IMKaLUI0 — HETIPUMeHNMO.
ITocrynuna 24.07.2024. Ilpunsra 03.09.2024.

Jns putupoBanus: Jumaniyazova E.D., Sentyabreva A.V., Kosyreva A.M., Lokhonina A.V. Molecular genetic signatures of
head and neck squamous cell carcinoma and their changes induced by proton irradiation // Becthuk Poccuiickoro yHuBepcrTeTa
npy>x6b1 HapozoB. Cepust: MemuipHa. 2024. T. 28. Ne 4. C. 413-426. doi: 10.22363/2313-0245-2024-28-4-413-426. EDN: GKJBSB

Corresponding author: Jumaniyazova Enar Denisovna— PhD student, assistant at the Department of Histology, Cytology and
Embryology of the Medical Institute of the Russian Peoples’ Friendship University, researcher at the Laboratory of Molecular
Cell Pathophysiology of the Research Institute of Molecular and Cellular Medicine of the RUDN University, 117198, Miklukho-
Maklaya st., 6, Moscow, Russian Federation. E-mail: enar2017@yandex.ru

Jumaniyazova E.D. ORCID 0000-0002-8226-0433

Sentyabreva A.V. ORCID 0000-0001-5064-219X

Kosyreva A.M. ORCID 0000-0002-6182-1799

Lokhonina A.V. ORCID 0000-0001-8077-2307

OmeemcmeeHHbilii 3a nepenucky: xymaHusi3oBa J./]. — acIMpaHT, aCCUCTeHT Kadepbl TMCTOJIOTHH, LIATO/IOTUH M SMOPHOJIOTHH
MeJULIMHCKOTO MHCTUTYTa PoCchiicKoro yHUBepcUTeTa IPY>KObI HApOZIOB, CTaXep-HUCC/ie[joBaTeslb 1ab0opaTopyUH MOJIEKY/ISIPHON
naTo¢r3n0Ioruu KaeTku HayuHo-uccieoBaTe/IbCKOro MHCTUTYTA MOJIEKY/ISIPHOM M K/IeTOYHON MeAWIuHbl Poccuiickoro
YHuBepcHTeTa ApyKObI Hapo#oB, Poccutickas ®epeparws, 117198, r. Mockea, yi. Muknyxo-Makas, . 6. E-mail: enar2017@
yandex.ru

Ixymanusizosa O.[1. SPIN 1780-5326, ORCID 0000-0002-8226-0433

Cenrsibpera A.B. SPIN6966-9959, ORCID 0000-0001-5064-219X

KoceipeBa A.M. SPIN 5421-5520, ORCID 0000-0002-6182-1799

JloxonnHa A.B, SPIN 4521-2250, ORCID 0000-0001-8077-2307

426 OHKOJOI 14



	Содержание
	Contents
	ОНКОЛОГИЯ
	ONCOLOGY
	ГИСТОЛОГИЯ
	HISTOLOGY
	ХИРУРГИЯ
	SURGERY
	СТОМАТОЛОГИЯ
	DENTISTRY
	ФАРМАКОЛОГИЯ
	PHARMACOLOGY
	ГИНЕКОЛОГИЯ
	GYNECOLOGY



