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Abstract. Relevance. Atopic dermatitis (AD) is classified as a chronic immune-mediated disease, with its pathogenesis rooted
in genetic predisposition and immune response dysregulation, predominantly driven by T2-inflammatory reactions. This review
highlights key aspects of the immunopathogenesis of AD, emphasizing its systemic inflammatory nature linked to T2-immune
dysregulation. This leads to the activation of cytokines such as IL-4, IL-5, IL-13, and IL-31. The article analyzes modern treatment
approaches, including targeted therapy aimed at blocking T2 cytokines, stressing the importance of early intervention to prevent
complications and the development of the atopic march. Understanding T2-inflammation mechanisms opens new opportunities
for developing effective personalized therapies for AD. Conclusion. Type 2 inflammation plays a pivotal role in the pathogenesis
of AD, driving chronic inflammation, skin barrier dysfunction, and the clinical manifestations of the disease. Key mediators of
T2 inflammation-including IL-4, IL-5, IL-13, and IL-31-regulate the activation of various immune-competent cells, not only
amplifying inflammation but also contributing to the development of pruritus. This, in turn, establishes the self-perpetuating
“itch-scratch” cycle, which exacerbates skin damage and further stimulates inflammatory processes. Impaired skin barrier function
also facilitates the penetration of allergens and microbial agents, further activating the immune response and worsening disease
severity. Studying type 2 inflammation as a central mechanism in AD pathogenesis not only advances our understanding of the
disease but also facilitates the development of new therapeutic strategies to control AD and improve patients’ quality of life,
which remains a priority in contemporary immunology, allergology, and dermatology.
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Introduction

Atopic dermatitis (AD) is a chronic inflammatory
skin disease characterized by genetic predisposition,
epidermal barrier dysfunction, and dysregulated type
2 immune responses [1, 2]. Immune-mediated inflam-
matory diseases are classified into three main types
based on the predominant immune response driving
their pathogenesis.

Type 1 inflammatory diseases are associated with
excessive activation of Th1 lymphocytes and innate im-
mune cells, leading to increased production of cytokines
such as interferon-y (IFN-y), interleukin (IL)-12, and
tumor necrosis factor (TNF). These cytokines provide
protection against intracellular pathogens, but their
overproduction triggers chronic inflammation and tissue
damage. Examples of such diseases include rheumatoid
arthritis, sarcoidosis, and Crohn’s disease.

Type 2 inflammatory diseases are characterized by
the predominance of Th2 lymphocytes, type 2 innate
lymphoid cells (ILC2s), and cytokines such as IL-4,
IL-5, and IL-13, which are associated with allergic
inflammation, eosinophil activation, IgE production, and
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impaired skin and mucosal barrier function. Examples
include AD, asthma, allergic rhinitis (AR), and related
conditions.

Type 3 inflammatory diseases are driven by Th17
cell activation and the production of IL-17 and IL-22,
which promote neutrophilic inflammation. This immune
response targets extracellular bacteria and fungi, but
when dysregulated, it contributes to tissue damage
and chronic inflammation in diseases such as psoria-
sis, ankylosing spondylitis, and ulcerative colitis [3,
4]. This classification of chronic immune-mediated
inflammatory diseases has become particularly relevant
with the advent of targeted therapies directed at specific
biological pathways.

According to global epidemiological studies, the
prevalence of AD is 15-20% in children and up to 10%
in adults [5]. One in five children with AD shows no
detectable allergen-specific IgE to food or airborne
allergens [6]. In 20—40% of patients, AD manifests as
moderate-to-severe disease and is considered a systemic
disorder with multi-organ involvement [7-9]. The patho-
genesis of AD involves genetic predisposition, impaired
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epidermal barrier function, predominant type 2 immune
responses, skin microbiome alterations, IgE-mediated
sensitization to allergens, and autoimmune mechanisms,
which collectively determine the disease phenotype
and endotype [10].

The immune response in AD involves various im-
mune cells, including T lymphocytes, dendritic cells,
ILC2s, keratinocytes, monocytes, and eosinophils. These
cells are activated by allergens and microbial agents
penetrating the compromised skin barrier and produce
pro-inflammatory cytokines such as IL-4, IL-5, IL-13,
IL-31, and others.

Investigation of the immunological mechanisms
underlying AD has become particularly crucial with
the emergence of novel targeted biologic therapies.
This review synthesizes current understanding of type
2 inflammation in AD pathogenesis and evaluates

contemporary therapeutic approaches for disease
management.

Key characteristics of type 2 inflammation

The type 2 immune response normally provides
protection against parasitic and helminthic invasions and
supports the barrier functions of the skin and mucous
membranes. However, its dysregulation can lead to the
development of type 2 inflammation. This type of im-
mune response is characterized by the activation of Th2
cells, ILC2s, and an increased production of cytokines
such as IL-4, IL-5, IL-9, IL.-10, IL-13, IL-31, certain
chemokines, as well as I1.-25, I1.-33, and thymic stromal
lymphopoietin (TSLP), which are mainly secreted by
non-immune cells. The main biological functions of
these cytokines are presented in Table 1 [3, 11].

Table 1
The main biological functions of T2 cytokines

Cytokine/ References

Main biological functions

IL-4/ [11-13]

Stimulation of Th2 cell differentiation.Maintenance of survival, long-term persistence, and activity of Th2 cells under
inflammatory conditions.Regulation of antibody production: stimulation of B cell isotype switching from IgM to IgE;
enhancement of IgG4 production.Stimulation of eosinophils via activation of IL-5 and other mediators.Epidermal
barrier dysfunction: downregulation of structural barrier proteins (filaggrin, involucrin, loricrin).Impaired antimicrobial
defense: reduced synthesis of skin lipids and antimicrobial peptides.Modulation of inflammation through activation
of other immune cells, including mast cells, basophils, and macrophages, and maintenance of pro-inflammatory
cytokine production (IL-13).Tissue remodeling via stimulation AAMs, which participate in tissue repair and remodeling.

IL-13/[11-13]

Stimulation of the production of other Th2 cytokines: IL-4 and IL-5.Maintenance of eosinophilic inflammation through
interactions with other cytokines, including IL-5.Activation of AAMs, supporting chronic inflammation.Epidermal
barrier dysfunction: downregulation of structural barrier proteins (filaggrin, involucrin, loricrin).Impaired antimicrobial
defense: reduced synthesis of skin lipids and antimicrobial peptides (cathelicidins and beta-defensins).Enhancement
of collagen and polyamine synthesis, contributing to tissue remodeling and repair.Goblet cell hyperplasia and
increased mucus production, especially in the airways.Activation of sensory neurons, amplifying itch perception
and pruritogenic responses.Stimulation of B cells isotype switching to IgE, thereby intensifying allergic reactions.

IL-5/[11,14]

Regulation of eosinophils: stimulation of proliferation, maturation, and survival of eosinophils in the bone marrow;

enhancement of eosinophil migration from the bloodstream to inflamed tissues.Activation of eosinophils: increased
capacity of eosinophils to secrete granule contents (major basic protein, peroxidase, etc.) for the destruction of
parasites and pathogens.Increased accumulation of eosinophils at sites of inflammation, contributing to the
chronicity of inflammatory processes, especially in allergic diseases.Interaction with other Th2 cytokines (IL-4,
IL-13), supporting allergic inflammation.Participation in the elimination of large extracellular pathogens, such as
helminths, through activation of eosinophils and basophils.Maintenance of basophil survival, their activation, and
migration into tissues.Induction of angiogenesis: stimulation of new blood vessel growth, which is associated with
the maintenance of inflammatory processes

IL-31/[15,16]

Pruritogenic function: activation of sensory neurons via IL-31 receptor alpha (IL-31RA) and oncostatin M-specific
receptor beta (OSMRB); IL-31 is a key mediator of itch in AD, chronic nodular prurigo, and other inflammatory skin
diseases.Epidermal barrier dysfunction: downregulation of structural barrier proteins (filaggrin, involucrin, loricrin).
Stimulation of keratinocytes to produce pro-inflammatory cytokines and chemokines CCL17 and CCL22.Amplification
of skin inflammation by recruiting additional immune cells, including eosinophils and Th2 cells.Tissue remodeling:
stimulation of cell proliferation and growth factor production.Interaction with other type 2 inflammation mediators
IL-4 and IL-13.Involvement in itch mechanisms in systemic diseases such as Hodgkin lymphoma.Influence on the
skin microbiome, creating conditions favorable for the growth of pathogenic microorganisms like Staphylococcus
aureus.Interaction of IL-31 with skin and immune cells contributes to the transition from acute to chronic inflammation.

IMMUNOLOGY
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IL-9/[17]

Proliferation, survival, and activation of mast cells, promoting the release of histamine and other mediators.
Maintenance of type 2 inflammation: stimulation of IL-4 and IL-13 production.Participation in the immune response
against helminths by stimulating mast cells, mucus secretion, and recruitment of immune cells to affected tissues.
Stimulation of eosinophils.Enhancement of mucus secretion in the airways, contributing to parasite clearance but also
causing hypersecretion in bronchial asthma.Stimulation of fibroblasts to produce collagen, potentially contributing
to tissue fibrosis in chronic inflammation.Activation of ILC2s, which produce type 2 cytokines.Stimulation of B cells
isotype switching to IgE, thereby intensifying allergic reactions.

IL-10/[18-20]

Suppression of inflammation: inhibition of the production of pro-inflammatory cytokines IL-1, IL-6, IL-12, IFN-y, and
TNF-a.Reduction of macrophage and dendritic cell activation by suppressing their antigen-presenting capacity
and release of pro-inflammatory mediators.Inhibition of activation and proliferation of Th1 cells, thereby limiting
inflammation.Maintenance of survival and function of Tregs, which play a critical role in preventing autoimmune
diseases.Stimulation of antibody production by B cells, especially IgG4 and Ig A.Decreased production of autoantibodies,
which is important for preventing the development of autoimmune reactions.Limitation of the inflammatory activity
of neutrophils and macrophages.Reduction in the production of reactive oxygen species and enzymes capable of
causing oxidative stress.Stimulation of growth factor production that supports tissue repair.Maintenance of immune
tolerance: prevents hyperactivation of the immune system, ensuring tolerance to self-antigens and promoting
tolerance to commensal microbes in the gut and other barrier tissues.Regulation of the microbiome.Limitation of
tissue damage during infections by reducing the intensity of the inflammatory response; however, excessive IL-10
production may weaken immune defense and contribute to infection chronicity.

IL-33/[16,21]

Activation of ILC2: IL-33 stimulates ILC2 to produce key type 2 cytokines IL-5 and IL-13.Enhancement of Th2 cells
differentiation and increased production of IL-4, IL-5, and IL-13, contributing to the development of allergic reactions.
Activation of mast cells, basophils, and eosinophils, and recruitment of immune cells to sites of inflammation.
Maintenance of skin itch through activation of keratinocytes and impairment of barrier function, facilitating allergen
penetration.Stimulation of macrophage and fibroblast activation, promoting tissue remodeling and repair after
injury.Support of immune responses against helminths by enhancing mucus secretion and recruiting immune cells.
Alarmin function: released upon tissue damage to trigger inflammatory responses.Increased vascular permeability.
Influence on the microbiome composition, promoting growth of pathogenic microorganisms and thereby exacerbating
inflammation.

IL-25/ [21,22]

Stimulation of differentiation and activation of Th2 lymphocytes and activation of ILC2s, which enhances the
production of cytokines IL-4, IL-5, and IL-13.Enhancement of eosinophil migration and activation.Participation in
immune defense against helminths by stimulating mucus production, recruiting immune cells to affected tissues,
and promoting intestinal smooth muscle contraction, thereby facilitating parasite expulsion.Activation of dendritic
cells and macrophages, which sustain the inflammatory response.Increased production of chemokines that attract
additional immune cells to the site of inflammation, further amplifying the immune response.Supports epithelial
repair after injury.Maintains a type 2 immune response while suppressing Th1 and Th17 responses, thus limiting
inflammation associated with other immune pathways.Interacts synergistically with other alarmins such as IL-33
and TSLP, creating a potent signal for the activation of type 2 inflammation.

TSLP/ [23,24]

Activation of dendritic cells, promoting their migration and enhancing their antigen-presenting capacity; programs
dendritic cells to stimulate Th2 lymphocyte differentiation, thereby amplifying the type 2 immune response.Stimulation
of Th2 cells to produce IL-4, IL-5, and IL-13, which intensify the inflammatory process.Activation of ILC2.Induction
of itch and skin inflammation through activation of sensory neurons, contributing to increased pruritus, especially
in AD.Enhancement and maintenance of chronic skin inflammation.Regulation of barrier functions of the skin and
mucous membranes.Stimulation of migration and activation of eosinophils, mast cells, and basophils.Maintenance
of survival and activation of Th2 lymphocytes.Interaction with other alarmins such as IL-33 and IL-25, enhancing
their effects and promoting robust activation of type 2 inflammation.Modulation of interactions between immune
and nervous system cells, strengthening the link between inflammation and itch.

The functions of IL-4 and IL-13 are largely similar
but not identical: IL-4 and, to a lesser extent, IL.-13
regulates immune response switching and IgE syn-
thesis by plasma cells. IL-4, but not IL-13, promotes
differentiation of T-helper cells from ThO to Th2 cells.
They also recruit inflammatory effector cells, reduce
expression of filaggrin and other skin structural pro-
teins; in mouse models these cytokines increased S.
aureus skin colonization. IL-4 and IL-13 play a key
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role in macrophage activation through interaction with
the IL-4Ra receptor, which is a common receptor chain
for both cytokines. This process leads to the formation
of alternatively activated macrophages (AAMs), which
differ from classically activated macrophages by their
role in inflammation regulation, tissue repair, and
parasite defense [13, 25]. Several studies have shown
that IL-4 and IL-13 stimulate macrophages to produce
mediators such as arginase-1 (Argl) and Resistin-like
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molecule o (RELMa) [26, 27]. Argl competes with
nitric oxide synthase (iNOS) for the common substrate
arginine and suppresses NO-mediated antimicrobial
pathways in classically activated macrophages. A key
function of Argl is inflammation suppression, achieved
not only through iNOS inhibition but also via direct
effects on T-cell function. T-cells are sensitive to argi-
nine concentration, and its depletion through arginase
activation impairs their function. Ornithine, in turn,
is used for polyamine and proline synthesis, which
support cell proliferation and collagen production.
These processes may underlie fibrosis development
and pathological tissue remodeling in asthma [28].
Furthermore, studies demonstrate Argl’s ability to
participate in tissue repair via L-ornithine and exert
effector activity against nematodes by limiting parasite
mobility and promoting macrophage uptake [29].
Macrophages also secrete RELMa, which can disrupt
parasite metabolism and reduce their motility [30].
Macrophage activation through the IL-4Ra receptor,
shared by IL-4 and IL-13 cytokines, leads to their
alternative activation, significantly enhancing their
ability to interact with antibody-coated parasites. This
process involves several key mechanisms: increased
Fc receptor expression, improved adhesion and inter-
action, and secretion of Argl and polyamines. Through
IL-4Ra activation, macrophages alter their metabolism,
switching to aerobic glycolysis, which enhances their
capacity for active uptake and processing of opsonized
particles. Thus, IL-4Ra-mediated macrophage ac-
tivation makes them more efficient at recognizing
antibody-coated parasites, enhancing their phagocytic
capacity and providing significant immune defense
against parasitic infections. AAMs also participate
in recruiting other immune cells, such as eosinophils,
which contribute to parasite destruction through toxic
granule proteins. A key biological function of IL-4 is
stimulating naive T-lymphocytes (Th0) and their dif-
ferentiation into Th2 cells [3]. IL-4 and IL-13 promote
immunoglobulin class switching in B-lymphocytes
[31] and enhance IgE production [11]. One of the most
important functions of IL-4 and IL-13 is their ability
to activate sensory neurons (itch receptors) in the skin
and participate in the pathological “itch-scratch” cycle,
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which on one hand aims to eliminate pathogens from
the skin surface, but on the other exacerbates skin
damage and inflammation [32, 33].

IL-5 plays a key role in eosinophil activation, mo-
bilization, and parasite-killing capacity. This process
involves several stages ensuring effective parasite
elimination and inflammatory response regulation. IL-5
stimulates eosinophil differentiation and maturation in
bone marrow, acting on eosinophil precursors through
the IL-5 receptor (IL-5R), enhancing their proliferation,
and after cell maturation, promotes eosinophil release
from bone marrow into bloodstream and migration to
inflammation sites [11, 14, 34, 35]. IL-5 increases adhe-
sion molecule expression on eosinophils, enabling their
interaction with endothelial cells and tissue migration
through vascular walls [34]. IL-5 activates eosinophils,
enhancing their ability to release toxic granules upon
parasite contact.

IL-9 is an important cytokine in Th2 response,
supporting mast cell, basophil and eosinophil activation.
It enhances IL-4, IL-5 and IL-13 production, promoting
development and maintenance of allergic inflammation.
IL-9 plays a key role in parasite defense by stimulating
mucus secretion and recruiting immune cells to affect-
ed tissues [36]. IL-9 participates in both protective
mechanisms and pathological processes associated
with allergic diseases and chronic inflammation [37].

IL-10 plays a crucial role in immune response regu-
lation and homeostasis maintenance. On one hand, IL-10
suppresses proinflammatory cytokine production (IL-1,
IL-6, IL-12, TNF-a, IFN-y) by acting on macrophages,
dendritic cells and other innate immune effector cells
[19, 38, 39]. IL-10 reduces antigen presentation and
inflammatory mediator release by macrophages and
dendritic cells, limiting excessive inflammation and
protecting tissues from damage [40]. On the other hand,
IL-10 supports regulatory T-cells (Tregs), enhancing
their role in suppressing inflammatory responses and
preventing autoimmune reactions [41]. IL-10 stimu-
lates antibody production by B-cells, particularly IgA,
important for maintaining mucosal barrier function
in gut and airways [42]. Moreover, IL-10 plays a key
role in establishing immune tolerance to commensal
microbiota, preventing excessive inflammation in
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barrier tissues [43]. Thus, IL-10 has multifunctional
roles, restraining inflammation and protecting against
autoimmune reactions, but under certain conditions
may weaken pathogen defense.

IL-31 is a key mediator of skin itching, inflamma-
tion and tissue remodeling. It activates sensory neurons
causing itch, enhances skin inflammation through
keratinocyte activation and proinflammatory cytokine
production [44], and impairs skin barrier function by
reducing expression of key structural proteins including
filaggrin [45].

Alarmins (IL-25, IL-33 and TSLP)

Damaged epithelial cells release alarmins that play
an important role in activating innate immunity and
signaling threats to the body. Their function is to rapidly
recruit immune cells to sites of injury and infection.

IL-25 plays a key role in activating type 2 in-
flammation by stimulating production of IL-4, IL-5
and IL-13 by Th2 cells and ILC2s [46]. Studies show
elevated levels of this cytokine in patients with AD
and asthma [47]. IL-25 also enhances protection
against parasites and amplifies allergic inflam-
mation by increasing migration and activation of
immune cells [48]. IL-33 is a key mediator of type
2 inflammation that activates ILC2s, basophils and
mast cells, boosting production of IL.-5 and IL.-13.
It plays an important role in development of asthma
and AD, where its levels are elevated in affected
tissues [49]. IL-33 receptors are found on memory
Th2 cells, suggesting its role in activating adaptive
immune responses [50]. IL-33 is also involved in
tissue remodeling processes and exacerbates chronic
inflammation, particularly in allergic and inflamma-
tory diseases. TSLP plays a crucial role in initiating
and maintaining type 2 inflammation. It activates
dendritic cells which stimulate Th2 cell differentiation
and production of IL-4, IL-5 and IL-13 [51,52]. TSLP
also enhances inflammatory responses through OX40
ligand expression, increasing activity of Th2 cells and
ILC2s [53]. Its elevated expression in skin correlates
with severity of AD and induces itching by acting
on sensory neurons [54].
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Thus, type 2 inflammation plays an important
biological role in protecting against infections in-
cluding parasitic infections and maintaining skin and
mucosal barrier functions. Type 2 inflammation is
characterized by activation of Th2 lymphocytes, ILCs
and production of key cytokines including IL-4, IL-5,
IL-13 and IL-31. These cytokines regulate eosinophils,
mast cells and basophils which secrete inflammatory
mediators and toxic proteins to eliminate parasites.
Type 2 inflammation also activates IgE production.
However, beyond its protective role, type 2 inflamma-
tion contributes to pathogenesis of chronic inflamma-
tory and allergic diseases. It disrupts skin and mucosal
barriers by suppressing structural protein synthesis and
increasing permeability to allergens, pathogens and
nonspecific irritants. Simultaneously, type 2 inflam-
mation maintains chronic inflammation by recruiting
immune cells to affected tissues, stimulating mucus
secretion and provoking itch through activation of sen-
sory neurons by alarmins IL.-31 and TSLP. Interaction
with microbiome further exacerbates inflammation,
creating favorable conditions for growth of pathogenic
microorganisms like S. aureus. Mechanisms of type
2 inflammation are involved in pathophysiology of
multiple diseases: AD, prurigo nodularis, chronic
spontaneous urticaria, bullous pemphigoid, eosino-
philic esophagitis, chronic rhinosinusitis with nasal
polyps, asthma, and eosinophilic chronic obstructive
pulmonary disease [11, 55-57].

Pathogenetic mechanisms
of atopic dermatitis

AD is a common chronic type 2 inflammatory
systemic disease characterized by a chronic relapsing
course, based on genetic predisposition to allergy,
immune dysregulation, and skin barrier dysfunction
[1, 10, 58].

Impairment of skin barrier function
Disruption of the epidermal barrier is a key link in
AD pathogenesis, determining both predisposition to
the disease and clinical features. These changes lead
to increased skin permeability to various antigens and
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nonspecific irritants and elevated transepidermal water
loss. The main aspects of epidermal barrier dysfunc-
tion involve defects in epidermal structural proteins
(filaggrin, involucrin, loricrin) [59, 60], changes in skin
lipid layer composition (reduced ceramides, free fatty
acids, and cholesterol) [61], increased transepidermal
water loss, and decreased synthesis of antimicrobial
peptides [62].

Filaggrin, the most important structural skin protein
responsible for keratinization, hydration, and antimi-
crobial defense, is the main component of keratohyalin
granules [63, 64]. Filaggrin deficiency caused by ge-
netic disorders can lead to development of AD in early
childhood, severe disease course, higher likelihood of
concomitant respiratory allergic diseases, and predis-
position to recurrent microbial and viral skin infections
[65]. However, approximately 40% of filaggrin gene
mutation carriers do not develop AD, and filaggrin
mutations are found in only 15-50% of AD patients
[64]. In a recently published study by SahlénP. et al., the
influence of single nucleotide polymorphisms (SNPs)
identified through genome-wide association studies
(GWAS) on epidermal barrier dysfunction was inves-
tigated using chromosome conformation capture [66].
It was shown that many GWAS-identified SNPs can
affect distant genes, with only 35% of target genes being
closest to known GWAS variants. In a GWAS-based
study by DeVore et al., caspase recruitment domain
family member 14 (CARD14) was shown to regulate
filaggrin expression in the skin of children with AD
[67], with CARD14 regulating filaggrin homeostasis
depending on the rs11652075 variant in the CARD14
gene, which is also associated with psoriasis. Genetic
filaggrin abnormalities do not explain all skin barrier
dysfunctions in AD, but patients without such genetic
defects may later show secondarily reduced filaggrin
levels [68]. AD also features decreased levels of other
terminal differentiation proteins of keratinocytes, such
as loricrin and involucrin [69], as well as tight junction
proteins [70].

AD patients also show reduced ceramide levels
in both affected and unaffected skin, as well as dis-
turbances in ceramide-to-cholesterol ratios [71]. The
stratum corneum of AD patients shows elevated pH
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levels, leading to increased serine protease activity and
contributing to inactivation and degradation of acid
sphingomyelinase and glucocerebrosidase enzymes nec-
essary for ceramide synthesis. Increased serine protease
activity reduces lamellar body secretion through the
protease-activated receptor 2 (PAR2) signaling pathway,
leading to decreased stratum corneum thickness in AD
patients.

Activation of type 2 inflammation

AD features dysregulation of type 2 immune re-
sponse, leading to development of local and systemic
inflammation characterized by activation and prolifer-
ation of Th2 lymphocytes, I1.Cs) and involvement of
proinflammatory type 2 cytokines — IL-4, IL-5, IL-13 in
response to allergens penetrating the impaired epidermal
barrier [3, 4] (Figure). Although many immune signaling
pathways involved in AD pathogenesis may underlie
different disease subtypes, activation of type 2-mediated
immune mechanisms is the dominant mechanism in
disease pathogenesis [1, 72, 73].

Type 2 inflammation activation is a multi-stage
process beginning with epidermal barrier damage,
which can be caused by genetic defects such as filag-
grin gene mutations [60, 71, 74], or external factors
such as allergens [75], environmental pollution [76],
and microbial toxins [77]. In response, skin epithelial
cells release alarmins, including TSLP, IL.-25 and
IL-33, which activate innate and adaptive immune
mechanisms. A recently published systematic review
and meta-analysis included original articles examin-
ing TSLP levels in serum of AD patients [52]. The
meta-analysis included 14 studies with 1032 AD
patients and 416 controls. It showed that TSLP levels
were significantly higher in AD patients compared to
controls, with stratification by region, age, disease
severity, TSLP detection method, sample size and
study quality revealing significantly increased TSLP
levels in adult AD patients living in Europe. TSLP
elevation was found at all severity levels compared
to controls, with higher levels in adults than children,
and increasing with disease severity. The biological
role of alarmins is described in Table 1, importantly,
they play a key role in initiating type 2 inflammation
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Fig. The main pathogenetic mechanisms of T2 inflammation in AD

by activating ILC2, mast cells, basophils and den-
dritic cells. TSLP-stimulated dendritic cells migrate
to lymph nodes where they activate naive T cells and
stimulate their differentiation into Th2 cells. These
Th2 cells secrete key type 2 inflammation cytokines
such as IL.-4, IL-5, IL-13 and IL.-31. IL.-4 and IL-13
stimulate antibody isotype switching to IgE by plasma
cells, maintaining allergic sensitization. Additionally,
IL-4 plays a key role in differentiation of ThO cells
into Th2 cells, enhancing type 2 immune response
(Figure).

IL-4 and IL-13 suppress synthesis of epidermal
structural proteins such as filaggrin, involucrin and
loricrin, which impairs skin barrier function and pro-
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motes colonization by pathogenic microorganisms
such as S. aureus. IL-5 stimulates recruitment and
activation of eosinophils, which release cytotoxic
granules that damage tissues and enhance inflam-
mation. IL-31 acts on sensory neurons, causing itch
that contributes to the “itch-scratch” cycle [44].
This cycle exacerbates mechanical skin damage,
worsens inflammation and maintains the chronic
nature of the disease. Subsequently, inflammation
may transition to a chronic phase when Th1- and
Th17-mediated immune responses join type 2 in-
flammation. These mechanisms contribute to tissue
remodeling, epidermal thickening and increased
inflammation, making AD course more severe.
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Relationship between inflammation
and skin microbiome disruption

Microbial factors such as S. aureus toxins and
superantigens further stimulate immune response by
increasing proinflammatory cytokine production and
exacerbating barrier dysfunction. The skin microbi-
ome state depends on severity of epidermal barrier
impairment, climatic factors, hygiene product use, and
topical therapy. In AD patients, S. aureus colonization is
particularly significant as it not only triggers exacerba-
tions but also maintains pathological immune response.
S. aureus attaches to corneocytes by binding to the
N-terminal region of corneodesmosin [78], and also
forms biofilms closely associated with AD severity [79].
S. aureus has been shown to not only be an exacerbation
factor and cause of secondary bacterial infections, but
also to initiate immediate hypersensitivity-type immune
responses [80—82]. Moreover, S. aureus exacerbates
epidermal barrier dysfunction in AD and stimulates
expression of proinflammatory cytokines [83, 84].
AD features reduced skin microbiome diversity due to
staphylococcal dominance, with S. aureus contamination
being significantly higher in affected versus unaffect-
ed skin areas [84,85]. A prospective skin microbiome
study assessing relationship between skin microbiota
and disease progression in children aged 2—15 years
with AD at different disease stages showed decreased
microbiome diversity during exacerbations [86]. With
impaired epidermal barrier, S. aureus can penetrate deep
skin layers where it may interact with immune cells and
stimulate production of type 2 cytokines: IL-4, IL-13
and IL-22 and TSLP.

Not only skin microbiome but also respiratory
and gastrointestinal microbiomes may play roles in
AD pathogenesis. In a prospective cohort study by
Lehtiméki J. et al. [87] involving 700 children from
urban and rural areas, respiratory and gut microbiota
were studied for potential associations with asthma and
AD development. Risk of asthma and IgE sensitization
to respiratory allergens was higher in urban-reared chil-
dren, with respiratory and gut microbiota composition
differing between urban and rural infants.

AD patients also show increased susceptibility to
fungal infections caused by Candida and spp. TLR2
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receptors play an important role in this process by
mediating interaction between immunogenic proteins
and keratinocytes, stimulating production of antimi-
crobial peptides a- and -defensins and chemokine
CXCLS8. Additionally, Malassezia antigens can induce
specific IgE production through T cell-mediated B
cell activation [88].

Thus, type 2 inflammation activation in AD repre-
sents a complex interaction between innate and adaptive
immune mechanisms, epithelial cells, nervous system
and microbial factors. This interaction underlies AD
clinical manifestations including itch, chronic inflam-
mation, skin barrier dysfunction and increased allergen
sensitivity. Understanding these processes opens possi-
bilities for targeted therapy aimed at blocking key type
2 inflammation cytokines such as IL.-4, IL.-13 and IL-31,
as well as restoring skin barrier function.

Therapeutic approaches
to control type 2 inflammation

Early intervention aimed at reducing the impact
of systemic type 2 inflammation in AD may not only
achieve disease control or remission but also reduce
the likelihood of developing atopic march, i.e., the
addition of comorbid allergic diseases such as asthma,
allergic rhinitis, food allergies, as well as normalize
skin structural changes and alter disease course [89].
The main goals of AD therapy are inflammation con-
trol, prevention of exacerbations, and improvement
of patient quality of life. AD treatment depends on
disease severity but always includes the use of emol-
lients, identification and elimination of allergens and
triggers. For mild cases, low-potency topical corticos-
teroids or calcineurin inhibitors are used, along with
antihistamines to reduce itching. For moderate cases,
moderate or high-potency corticosteroids are applied,
with antibacterial agents prescribed when necessary
to treat secondary infection. For severe AD, systemic
therapy is prescribed: cyclosporine, methotrexate or
targeted biologics, such as dupilumab, which blocks
key type 2 inflammation cytokines IL-4 and IL-13,
or selective JAK inhibitors (abrocitinib, baricitinib,
upadacitinib) [2, 571].
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Anti-cytokine targeted therapy for AD

Targeted immunotherapy for AD is aimed at specif-
ically affecting key molecules and signaling pathways
involved in inflammation development and pathological
immune response in this disease. Unlike traditional
systemic therapy using systemic corticosteroids or
immunosuppressants, targeted therapy selectively acts
on cytokines, receptors or other molecules, reducing
side effect risks and increasing treatment effectiveness.
The first approved targeted drug for moderate-to-severe
AD was dupilumab, which inhibits IL-4 and IL-13, key
mediators of type 2 inflammation [90-92]. In some
countries, various biologics targeting type 2 cytokines

are already registered or undergoing clinical trials for
efficacy and safety in AD treatment: anti-I.-13 (lebriki-
zumab and tralokinumab), anti-IL-5 (mepolizumab and
reslizumab); drugs blocking type 2 cytokine receptors
(benralizumab (IL-5Ra), nemolizumab (IL-31RA«);
anti-IgE (omalizumab and ligelizumab). The efficacy
and safety of other drugs targeting other type 2 inflam-
mation mediators such as alarmins IL.-33 (astegolimab,
etokimab, itepekimab, MEDI-3506), IL-33 receptor
(melrilimab) and TSLP (tezepelumab) are also being
studied. Table 2 presents the main targeted biologics
acting on key type 2 inflammation cytokines, their
biological targets and indications.

Table 2

Targeted biologic therapies for type 2 inflammation

Targeted biologic drug / References | Biological targets and effects

Therapeutic indications

Dupilumab / [91-96]

IL-4 (IL-4Ra, IL-13Ra)

AD, asthma, CRSWNP, EoE, prurigo nodularis, COPD (approved)
Bullous pemphigoid, CSU, CIU, allergic fungal rhinosinusitis, ABPA
(phase 3) Food allergy, pollen allergy (phase 2)

Tralokinumab / [97, 98]

IL-13(IL-13Ra2)

AD (approved in EU)

Cendakimab /[99, 100]

IL-13 (IL-13Ra2)

AD (phase 2)EoE (phase 3)

Lebrikizumab /[101-103]

IL-13 (IL-13RaT)

AD (phase 3)

Nemolizumab /[104-106]

IL-31 (IL-31Ra)

AD (phase 3)Prurigo nodularis (phase 3)Chronic itch (phase 2)

Asthma, EGPA, HES (approved)COPD, nasal polyposis (phase 3)

Mepolizumab /[14, 35,107-110] IL-5 FoE (phase 3)
Reslizumab /[14,111-113] IL-5 Asthma (approved)Sinusitis (phase 3)EGPA
Depemokimab / [114] IL-5 Asthma (phase 3)

Asthma (approved)Bullous pemphigoid, COPD, EoE, EGPA, HES,
Benralizumab /[112, 115-119] IL-5 (IL-5Ra) Nasal polyposis (phase 3)AD, CSU, Rhinosinusitis, Eosinophilic

gastroenteritis (phase 2)

Tezepelumab /[120-122] TSLP Asthma (approved), CRSWNP (phase 3)CSU, COPD (phase 2)
Astegolimab / [123,124] IL-33 (IL-33R) Asthma, COPD (phase 2)
Itepekimab /[125] IL-33 COPD (phase 3)
Tozorakimab /[126] IL-33 Asthma, AD, COPD, COVID-19 (phase 2)
Omalizumab /[127-132] IgE Asthma, CSU, nasal pgllép;;)s/ia,)s:sa:gr;al AR (approved)Food
Ligelizumab /[133,134] IgE CSU, Food allergy (phase 3)
Fezakinumab /[135] IL-22 AD (phase 2)

Note: CRSWNP — Chronic rhinosinusitis with nasal polyps; EoE — Eosinophilic esophagitis; COPD — Chronic obstructive pulmonary disease;
ABPA — Allergic bronchopulmonary aspergillosis; CSU — Chronic spontaneous urticaria; CIU — Chronic inducible urticaria;
EGPA — Eosinophilic granulomatosis with polyangiitis; HES — Hypereosinophilic syndrome; AR — Allergic rhinitis.
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Interestingly, the clinical efficacy of targeted
drugs against type 2 cytokines has provided deeper
insights into their role not only in AD but also in other
diseases such as asthma, chronic rhinosinusitis with
nasal polyps, and eosinophilic esophagitis. The lack
of efficacy of some targeted drugs in clinical trials has
proven highly valuable for understanding the precise
mechanisms underlying type 2 inflammatory diseases
and their treatment. For instance, the limited effective-
ness of mepolizumab [107], omalizumab [130], and
ligelizumab [136] in AD suggested that IL-5-mediated
peripheral blood eosinophilia is not the primary source
of the inflammatory cascade in AD, and that extremely
high IgE levels do not play a dominant role in disease
symptom development. On the other hand, the use of
certain biologic targeted drugs, such as anti-TNF [137],
anti-IL-17 [138], and anti-IL-12/23 [139], demonstrated
moderate clinical efficacy but was associated with an
increased risk of opportunistic and/or serious bacterial,
fungal, or viral infections.

JAK inhibitors

The JAK-STAT signaling system (Janus Kinas-
es — signal transducer and activator of transcription) is
a pathway consisting of Janus kinase (JAK) and signal
transducer and activator of transcription (STAT) pro-
teins, which transmits information from extracellular
polypeptide signals through transmembrane receptors
directly to target gene promoters in the nucleus. In AD,
this signaling system plays a critical role in activating
type 2 immune responses via IL-4, eosinophil activa-
tion, and B-cell differentiation. JAK inhibitors were
initially approved for rheumatoid arthritis, psoriasis,
and alopecia. The JAK1/JAK3 inhibitor tofacitinib is
approved for rheumatoid arthritis, psoriatic arthritis,
and ulcerative colitis; pilot studies have also explored
its efficacy in AD. Results from oral tofacitinib use
in a small group (six AD patients) for 8—29 weeks
showed a 66.6% reduction in SCORAD index, with
no adverse events reported [140]. A study of topical
2% tofacitinib ointment in 69 adult AD patients con-
firmed its clinical efficacy compared to placebo [141].
Another JAK inhibitor, delgocitinib, has broad-spectrum
activity, suppressing Th1, Th2, and Th17 responses by
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inhibiting JAK1, JAK2, JAK3, and TYK2. Its topical
form is approved in Japan for AD treatment [142],
with efficacy demonstrated over 28 and 52 weeks [143,
144]. A study in 22 children aged 6-24 months applied
0.25% or 0.5% delgocitinib ointment twice daily for
52 weeks, showing a —73.5% reduction in modified
Eczema Area and Severity Index (mEAST) by week
4,-81.7% by week 28, and —-81.9% by week 52, with
no treatment-related adverse events [145].

The JAK1/JAK2 inhibitor ruxolitinib carries high
immunosuppression and infection risks when adminis-
tered orally. Its topical form is approved in the U.S. for
short-term, intermittent treatment of mild-to-moderate
AD in patients >12 years without immunosuppres-
sion, when other topical therapies are inadequate or
contraindicated. Two Phase III trials (TRuE-AD1 and
TRuE-AD2) demonstrated the efficacy and safety of
0.75% and 1.5% ruxolitinib cream in adolescents/adults
with mild-to-moderate AD [146].

Baricitinib, a selective JAK1/JAK?2 inhibitor, is
approved in the EU and Russia for moderate-to-se-
vere AD in adults. Short- and long-term studies showed
improved skin condition, reduced itch, better sleep, and
enhanced quality of life with 4 mg/day over 16 weeks
[147], sustained efficacy at 68 weeks [148].

Next-generation JAK1-selective inhibitors upa-
dacitinib and abrocitinib are approved in Russia, the
EU, U.S., and Japan for AD. Upadacitinib is also ap-
proved for six other indications in Russia (rheumatoid
arthritis, psoriatic arthritis, axial spondyloarthritis,
non-radiographic axial spondyloarthritis, ulcerative
colitis, Crohn’s disease). Its AD profile was evaluated
in five trials involving >4,000 patients [149-152].
Abrocitinib is approved for moderate-to-severe AD in
adults/adolescents, showing rapid symptom reduction
by week 12 versus placebo [153, 154].

A recent network meta-analysis compared abroc-
itinib, baricitinib, and upadacitinib in moderate-to-se-
vere AD [155]. Analysis of 10 trials revealed all three
significantly improved Investigator’s Global Assessment
(IGA) and EASI scores. Upadacitinib 30 mg outper-
formed other doses/drugs in efficacy but had higher
adverse event rates; upadacitinib 15 mg and abrocitinib
200 mg showed comparable high efficacy. However,
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upadacitinib 30 mg may be optimal for short-term use
due to its superior efficacy despite higher side effects.
JAK inhibitors rapidly reduce itch and AD symptoms
by targeting cytokine pathways, but their selectivity in
vivo is dose-dependent. Rare adverse effects (cytopenia,
gastrointestinal perforation, malignancies) occur more
frequently than with biologics, underscoring the need
for further optimization in type 2 inflammatory diseases.

Conclusion

Type 2 inflammation plays a pivotal role in the
pathogenesis of AD, driving chronic inflammation, skin
barrier dysfunction, and the clinical manifestations of
the disease. Key mediators of T2 inflammation-including
IL-4, IL-5, IL-13, and IL-31-regulate the activation of
various immune-competent cells, not only amplifying
inflammation but also contributing to the development of
pruritus. This, in turn, establishes the self-perpetuating
“itch-scratch” cycle, which exacerbates skin damage
and further stimulates inflammatory processes. Impaired
skin barrier function also facilitates the penetration of
allergens and microbial agents, further activating the
immune response and worsening disease severity. The
advent of targeted biologic therapies, such as dupi-
lumab, lebrikizumab, and tralokinumab, has opened
new avenues for AD treatment by specifically blocking
key type 2 cytokines. These targeted approaches have
already demonstrated efficacy in reducing inflammation,
alleviating pruritus, and restoring skin barrier function.
However, not all biologics have proven equally effec-
tive, highlighting the need for further research into
disease mechanisms. For example, the lack of significant
clinical benefit from IL-5 inhibition underscores the
complexity of the inflammatory cascade and points to
the importance of other mechanisms, including micro-
biome disturbances and autoimmune processes. Future
research should focus on deepening our understanding of
the interactions between the immune system, epidermal
barrier, and environmental, genetic, and epigenetic
factors that may influence disease severity and treatment
response. Additionally, it is important to consider ethnic
and geographic differences in the clinical presentation
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and pathogenesis of AD to enable the development of
personalized treatment approaches.

In summary, studying type 2 inflammation as a cen-
tral mechanism in AD pathogenesis not only advances
our understanding of the disease but also facilitates the
development of new therapeutic strategies to control
AD and improve patients’ quality of life, which remains
a priority in contemporary immunology, allergology,
and dermatology.
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Ponb T2-BocnaneHus B naToreHe3se aTonM4yeckoro gepmartura
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2 POCCHICKHI YHUBEPCUTET JPY>KObl HAPOAOB, 2. Mockea, Poccuiickas ®edepayus

AnHoTanms. AkmyaabHocmb. Atonuueckuil fepMatuT (AT/]) OTHOCUTCSI K IMMYHOOIIOCpeZ,0BaHHBIM XpPOHUYECKUM
3abosieBaHuUsIM, B OCHOBE TIaTOreHe3a KOTOPOTO Jie)kaT reHeTHuecKue (hakTopbl U HapyIlleHWss UMMYHHOTO OTBeTa, C Tipeobiia-
naHveMm T2-BocranuTenbHBIX peakiuii. B 0630pe pacCMOTpeHbI K/T0UeBble acrieKTbl MMMYHOTIaToreHe3a 3aboneBadust, AT/]
paccMaTpuBaeTcst Kak CHCTEMHOe BOCIaIUTe/IbHOe 3a00ieBaHNe, CBSI3aHHOE C Avcperyssinyel T2-MMMYHHOTO OTBeTa, KOTOPbIH
aKTUBUPYETCS TIPY HapyllleHny DapbepHOi (QYHKIMK KO>KY U TIPUBOJUT K aKTUBALIUU Psifia LIMTOKWUHOB, TaKux Kak MJI-4,
WNJI-5, MJI-13, MJI-31 u ap. B cTraTtbe npejcTas/ieH aHaau3 COBPEMEHHBIX IO X0/0B K jeueHUt0 AT/l, BK/toUasi TapreTHyO
Teparivio, HarpaeJieHHYI0 Ha 6/I0KUPOBKY T2-1IUTOKUHOB, C YYeTOM BaKHOCTH PaHHEro TepareBTHUeCKOro BMelllaTebCTBa [JIjist
TIpel0TBpalLLieHNsI OCJIOKHEHUM U pa3BUTHSI aToNM4ecKoro Mapiia. [loHnMaHue MmexaHn3MoB T2-BocriasieHrst OTKPbIBaeT HOBbIE
TIepCIIeKTUBLI B pa3padboTke 3¢h(eKTUBHBIX METOZOB MePCOHUPUIIMPOBaHHOM Tepanuu AT /1. Bbigodbl. T2-BocmaneHye urpaet
K/TFOUEBYIO pOJib B TlatoreHe3e AT/, orpe/iesisisi XpOHHUUECKOe BOCIaieHne, HapylieHus: 6apbepHo (GYHKIMY KOXKU U KITMHUYe-
CKue TiposiBieHus 3aboneBanusi. OCHOBHbIe MeauaTopbl T2-Bocnanenust, BKitovast UJT-4, JI-5, NJT-13 u WJI-31, perynupytot
aKTUBAIIUIO Pa3/IMYHBIX UIMMYHOKOMITETEHTHBIX KJ/IETOK, He TOJIbKO YCHJIMBasi BOCIaleHre, HO M CIIOCOOCTBYS Pa3BUTHIO 3y,
KOTOPBIN (hOPMUPYET TIOPOUHBIHN LUK/ «3y/-pacuechbiBaHHe», YCYTYOISIONIUN TIOBPeX/IeHe KOXKHA ¥ CTUMYJTUPYIOIIUHN 1ab-
HeWIIyr0 aKTUBALIUIO BOCTIAIMTENBHBIX MporieccoB. HapyrieHne 6apbepHO# QYHKIMY KOXKU TaKKe 00jieruaeT MPOHUKHOBEHHE
ajyiepreHoB U MUKPOOHBIX areHTOB, UTO JIOTIO/THUTEILHO aKTUBUPYeT UMMYHHBIM OTBET U yCyry0sisieT TeueHre 3a00/1eBaHMsI.
N3yuenue T2-BocraneHus Kak K/IFOUEBOTO MexaHM3Ma rnartoreHe3a AT/l He TO/BKO yryOsisieT Hallle TOHUMaHve 3abo/ieBaHusl,
HO U OTKPBIBAeT MepCIeKTUBHI /j1s1 pa3pab0TKU HOBBIX TepareBTUUeCKUX CTPaTeryuii, KOTOpble MO3BOISIT KOHTPOJUPOBATh
TeueHue AT/l ¥ yIy4LINTh KauyeCTBO XKU3HU IMaL[MeHTOB, UTO SIB/sIETCS IPUOPUTETHOM 3ajaueil COBpeMeHHONM NMMYHOJIOTHH,
asyIeproyioruu Y 1epMaToIOTHH.

KiroueBble cj10Ba: atonmuueckuii gepMarut, T2-BocnaneHue, MTOKUHBI, 0MOMapKepbl, TapreTHasi Tepartis

Nudopmanus o puHaHcupoBaHuu. ViccnenoBanue v y0biMKalus oCyIlecTB/eHbI IIPU MoAep)KKe rpaHTa Poccutickoro
HayuHoro ¢oHza Ne 23-15-00432, https://rscf.ru/project/23-15-00432.

Bkuap aBropoB: O.I". EnuctoTriHa — cO0p ¥ aHau3 IMTepaTypHbIX KCTOUHWKOB, TIOJITOTOBKA M HAlTMCAHWe CTaTbH, PelaKTHPO-
BaHue ctatby; E.B. CMO/BHUKOB — COOp Y aHa/U3 INTepaTyPHBIX UCTOYHUKOB, HanucaHve cratey, .11 YepHymeBrny — cO6op
Y aHaJIM3 JIMTepaTypHbIX KCTOUHUKOB; A.O. JIuToBKMHA — cOOp U aHa/IM3 TMTepaTypHbIX KCTOUHUKOB, M.I". Bs3spoBa — c6op u
aHa/IM3 JIMTepaTypPHBIX UCTOYHUKOB, E.A. JIeBKOBa — cOOp U aHa/NN3 IMTePaTypHBIX UCTOUHHUKOB, HaricaHue crated, E.C. Pe-
JIeHKO — HaITlCcaHue TeKCTa U pe/lJakTHPOBaHUe CTaThbU. Bce aBTOPBI BHEC/IU CYIL|eCTBEHHBIN BK/Ia/ B Pa3pabOTKy KOHLIETILIH,
TMIPOBeZIeHNEe MCCIeA0BAHMS U MOTOTOBKY CTaThbH, MPOWIN U 0100prIv GUHANBHYIO BEPCHUIO Mepe/] yOnuKaryei.

HNudopmanys o KoHGUIMKTe HHTEPeCOB. ABTODHI JIEKTaPUPYIOT OTCYTCTBUE SBHBIX U NIOTEHL[HAIbHBIX KOH(IMKTOB MHTEPECOB,
CBSI3aHHBIX C [TPOBeJIEHHBIM UCC/IeJOBaHNEM U MyO/MKalel HacTosIIIel CTaTbu.

IMMUNOLOGY 383


https://orcid.org/0000-0002-4609-2591
mailto:el-olga%40yandex.ru?subject=%D0%95%D0%BB%D0%B8%D1%81%D1%8E%D1%82%D0%B8%D0%BD%D0%B0%20%D0%9E%D0%BB%D1%8C%D0%B3%D0%B0%20%D0%93%D1%83%D1%80%D1%8C%D0%B5%D0%B2%D0%BD%D0%B0
https://orcid.org/0000-0003-1302-4178
https://orcid.org/0000-0003-0006-2773
https://orcid.org/0000-0002-5021-9276
https://orcid.org/0000-0002-9858-7596
https://orcid.org/0000-0003-3358-5087
mailto:el-olga%40yandex.ru?subject=%D0%95%D0%BB%D0%B8%D1%81%D1%8E%D1%82%D0%B8%D0%BD%D0%B0%20%D0%9E%D0%BB%D1%8C%D0%B3%D0%B0%20%D0%93%D1%83%D1%80%D1%8C%D0%B5%D0%B2%D0%BD%D0%B0

Elisyutina O.G. et al. Bectuuk PYTH. Cepust: Meguuusa. 2025. T. 29. Ne 3

JTHYeCKOe yTBepKAeHHe — HelTpUMeHHMO.
BiiaropapHoCTH — HENIPUMEHUMO.

HudopmupoBaHHoe coryiacue Ha my0/JIMKaUI0 — HEIPUMeHMO.
IMoctynuna 08.12.2024. TIpunsra 13.01.2025.

Jnsa purupoBanus: Elisyutina O.G., Smolnikov E.V,, Chernushevich D.D., Litovkina A.O., Byazrova M.G., Levkova E.A.,
Fedenko E.S. The role of type 2 inflammation in the pathogenesis of atopic dermatitis // Bectauk Poccuiickoro yHuBepcurera
Opyx6s1 HapogoB. Cepust: MeauimHa. 2025. T. 29. Ne 3. C. 365—384. doi: 10.22363/2313-0245-2025-29-3-365-384. EDN
QSMOXR

Corresponding author: Olga G. Elisyutina— MD, PhD, Leading Researcher of the NRC Institute of Immunology, FMBA of
Russia; Head of the Immunology Department of the Medical Institute of the RUDN University named after Patrice Lumumba;
Russian Federation, 117198, Moscow, Miklukho-Maklaya st, 6. E-mail: el-olga@yandex.ru

Elisyutina O.G. ORCID 0000-0002-4609-2591

Smolnikov E.V. ORCID 0000-0003-1302-4178

Chernushevich D.D. ORCID 0000-0003-0006-2773

Litovkina A.O. ORCID 0000-0002-5021-9276

Byazrova M.G. ORCID 0000-0002-9858-7596

Fedenko E.S. ORCID 0000-0003-3358-5087

OmeemcmeenHblll 3a nepenucky: Envctotuna Osnbra I'ypeeBHa — JOKTOp MeAWLIMHCKUX HayK, BeYILMI HayuHbIM COTPYAHUK
OI'BY “T'HL] “Unrcturyt nmmyHosnorun” @MBA Poccuu; 3aBeaytormmii Kadeapori UMMyHOIOTUHA MeaULIMHCKOTO UHCTUTYTA
®I'AOY BO PYJIH um. I1. Jlymym6s1 Muno6pHayku Poccuy, . Mocksa, Poccutickas ®egepanust, 117198, . Mockea, yi. Mukimyxo-
Makrnas, f.6; E-mail: el-olga@yandex.ru

Emuctorrna O.I. SPIN 9567-1894, ORCID 0000-0002-4609-2591

Cwmomnbaukos E.B. SPIN 4874-8100, ORCID 0000-0003-1302-4178

Yepnymesnu [1.[1. SPIN 2497-5608, ORCID 0000-0003-0006-2773

JIutroBkuHa A.O. SPIN 2337-7930, ORCID 0000-0002-5021-9276

bsispoBa ML.I. SPIN 4317-9042, ORCID 0000-0002-9858-7596

JleBkoBa E.A. SPIN 6407-9880

®epenko E.C. SPIN 5012-7242, ORCID 0000-0003-3358-5087

384 MMMYHOOT 1A



