Особенности иммунной реактивности в динамике послеожогового периода

Обложка

Цитировать

Полный текст

Аннотация

Актуальность. На сегодняшний день сложным видом повреждения тканей кожи остается ожоговая травма. Наряду с локальными деструктивными и дистрофическими явлениями наблюдаются системные изменения в организме. Цель исследования - экспериментальное изучение иммунной реактивности организма нелинейных крыс в условиях «ожогового» стресса, сформированного в результате контактной термической травмы. Материалы и методы. Исследование проводили на нелинейных крысах-с амцах средней массы 220 гр. Функциональную активность иммунной системы лабораторных животных оценивали на основании стандартных тестов оценки адаптивности иммунной системы. Результаты и обсуждение . В ходе экспериментального исследования установлено, что в динамике ожоговой травмы у лабораторных животных наблюдались вариабельные изменения иммунной реактивности организма на уровне клеточного и гуморального звеньев иммунитета, что проявлялось снижением индекса РГЗТ и увеличением следующих показателей - титра антител, фагоцитарного индекса, фагоцитарного числа, лейкоцитарного коэффициента и количества лейкоцитов. Повышенное содержание палочкоядерных форм указывало на активацию гранулоцитопоэза, что определяло дерегенеративный ядерный сдвиг нейтрофильных гранулоцитов влево. Наряду с указанными изменениями наблюдали снижение массы иммунных органов (тимуса и селезенки), что можно объяснить выражением акцидентальной инволюции, вызываемой интоксикацией на фоне термического ожога. Выводы. В условиях «ожогового» стресса происходит иммунный дисбаланс в виде активации одних и супрессии других звеньев в разные сроки наблюдений. Таким образом, в ходе ожогового процесса происходящие на уровне организма системные иммунные изменения имеют разнонаправленный динамический характер, что свидетельствует об адаптивных возможностях иммунной системы.

Об авторах

А. К. Ажикова

Астраханский государственный медицинский университет

Email: alfiaimacheva@mail.ru
ORCID iD: 0000-0001-9758-1638
Астрахань, Российская Федерация

А. Л. Ясенявская

Астраханский государственный медицинский университет

Email: alfiaimacheva@mail.ru
ORCID iD: 0000-0003-2998-2864
Астрахань, Российская Федерация

М. А. Самотруева

Астраханский государственный медицинский университет

Автор, ответственный за переписку.
Email: alfiaimacheva@mail.ru
ORCID iD: 0000-0001-5336-4455
Астрахань, Российская Федерация

Список литературы

  1. Makhneva NV. Cellular and humoral components of the skin immune system. Russian magazine of skin and venereal diseases. 2016;19(1):12—17 (in Russian).
  2. Belokhvostova D, Berzanskyte I, Cujba AM, Jowett G, Marshall L, Prueller J, Watt FM. Homeostasis, regeneration and tumour formation in the mammalian epidermis. Int J. Dev Biol. 2018;62(6—7—8):571—582.
  3. Voisin T, Bouvier A, Chiu IM. Neuro-immune interactions in allergic diseases: novel targets for therapeutics. Int Immunol. 2017;29(6):247—261. doi: https://doi: 10.1093/intimm/dxx040.
  4. Khaitov RM. Immunology: structure and function of immune system. Textbook. 2nd, renewed. M.: GEOTAR-Media, 2019. 328 p. (in Russian).
  5. Samotrueva MA, Yasenyavskaya AL, Tsibizova АA, Bashkina OA, Galimzyanov Kh M. Neuroimmunoendocrinology: modern concepts of molecular mechanisms. Immunologiya. 2017;38(1):49—59. doi: https://doi: 10.18821/0206-4952-2017-38-1-49-59 (in Russian).
  6. Kon’kov SV, Ilyukevich GV, Zolotukhina LV. Evaluation of the effectiveness of the immunocorrection method in patients with severe thermal trauma. Emergency medicine. 2016;5(1):72—79 (in Russian).
  7. Korneva EA, Shanin SN, Novikova NS, Pugach VA. Cellmolecular bases of neuroimmune interaction under stress. Russian physiological journal named after I.M. Sechenov. 2017;103(3):217—229 (in Russian).
  8. Morrison VV, Bozhedomov AYu, Simonyan MA, Morrison AV. Systemic inflammatory response and cytokine profile in the dynamics of burn disease. Saratov Scientific and Medical Journal. 2017;13(2):229—232 (in Russian).
  9. Veiga-F ernandes H, Mucida D. Neuro-I mmune Interactions at Barrier Surfaces. Cell. 2016;165(4):801811. 10.1016/j' target='_blank'>https://doi: 10.1016/j. cell.2016.04.041.
  10. Vinaik R, Abdullahi A, Barayan D, Jeschke MG. NLRP3 inflammasome activity is required for wound healing after burns. Transl Res. 2020;217:47—60. doi: 10.1016/j.trsl.2019.11.002
  11. Abo El-N oor MM, Elgazzar FM, Alshenawy HA. Role of inducible nitric oxide synthase and interleukin-6 expression in estimation of skin burn age and vitality. J Forensic Leg Med. 2017;52:148—153. 10.1016/j.jflm.2017.09.001' target='_blank'>https://doi: 10.1016/j.jflm.2017.09.001
  12. Oka T, Ohta K, Kanazawa T, Nakamura K. Interaction between Macrophages and Fibroblasts during Wound Healing of Burn Injuries in Rats. Kurume Med J. 2016;62(3—4):59—66.https:// doi: 10.2739/kurumemedj.MS00003
  13. Farinas AF, Bamba R, Pollins AC, Cardwell NL, Nanney LB, Thayer WP. Burn wounds in the young versus the aged patient display differential immunological responses. Burns. 2018;44(6):1475—1481. 10.1016/j.burns.2018.05.012' target='_blank'>https://doi: 10.1016/j.burns.2018.05.012
  14. El Khatib A, Jeschke MG. Contemporary Aspects of Burn Care. Medicina (Kaunas). 2021;57(4):386. doi: 10.3390/ medicina57040386
  15. George B, Suchithra TV, Bhatia N. Burn injury induces elevated inflammatory traffic: the role of NF-κB. Inflamm Res. 2021;70(1):51—65. doi: 10.1007/s00011-020-01426-x
  16. MoinsTeisserenc H, Cordeiro DJ, Audigier V, Ressaire Q, Benyamina M, Lambert J, Maki G, Homyrda L, Toubert A, Legrand M. Severe Altered Immune Status After Burn Injury Is Associated With Bacterial Infection and Septic Shock. Front Immunol. 2021;12:586195. doi: 10.3389/fimmu.2021.586195
  17. Burns B, Jackson K, Farinas A, Pollins A, Bellan L, Perdikis G, Kassis S, Thayer W. Eosinophil infiltration of burn wounds in young and older burn patients. Burns. 2020;46(5):1136—1141. doi: 10.1016/j.burns.2019.11.022
  18. Jackson KR, Pollins AC, Assi PE, Kassis SK, Cardwell NL, Thayer WP. Eosinophilic recruitment in thermally injured older animals is associated with worse outcomes and higher conversion to full thickness burn. Burns. 2020 Aug;46(5):1114—1119. doi: 10.1016/j.burns.2019.10.018.
  19. Jeschke MG, van Baar ME, Choudhry MA, Chung KK, Gibran NS, Logsetty S. Burn injury. Nat Rev Dis Primers. 2020;6(1):11. doi: 10.1038/s41572-020-0145-5
  20. Willis ML, Mahung C, Wallet SM, Barnett A, Cairns BA, Coleman LG Jr, Maile R. Plasma extracellular vesicles released after severe burn injury modulate macrophage phenotype and function. J Leukoc Biol. 2022;111(1):33—49. doi: 10.1002/JLB.3MIA0321-150RR

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».