Expression of immune-associated genes in isolated classical monocytes in preeclampsia
- 作者: Vishnyakova P.A.1, Kiseleva V.V.1, Poltavets A.S.1, Karyagina V.E.1, Bagdasarian A.A.1, Knyazev E.N.2,3, Muminova K.T.1, Khodzhaeva Z.S.1, Elchaninov A.V.1,4, Sukhikh G.T.1
-
隶属关系:
- V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology
- National Research University Higher School of Economics
- M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry
- Research Institute of Human Morphology named after Academician A.P. Avtsyn, Russian Scientific Center of Surgery named after Academician B.V. Petrovsky
- 期: 卷 29, 编号 3 (2025): ONCOLOGY
- 页面: 335-352
- 栏目: OBSTETRICS AND GYNECOLOGY
- URL: https://journal-vniispk.ru/2313-0245/article/view/349490
- DOI: https://doi.org/10.22363/2313-0245-2025-29-3-335-352
- EDN: https://elibrary.ru/PSWFMN
- ID: 349490
如何引用文章
全文:
详细
Relevance. Preeclampsia is a severe complication of pregnancy, occurring in 8 % of cases and causing high maternal and perinatal mortality and morbidity. The etiology of preeclampsia is still a subject of research; however, more and more data indicate the involvement of innate immune cells, monocytes, in the pathogenesis of this dangerous pathology. The aim of our work was to study the expression of a number of immune-associated genes in classical blood monocytes in preeclampsia and physiological pregnancy. Materials and Methods. The work used the methods of gradient centrifugation, magnetic sorting, cytometric analysis, real-time PCR. Results and Discussion. For the first time, an increase in the expression of the pseudogene of the adhesion receptor coupled to the G protein, ADGRE4P, in classical monocytes in preeclampsia is described. A significantly low relative level of expression of the interleukin 8 gene — CXCL8 — in preeclampsia was also revealed. Сonclusion. The role of individual monocytic subpopulations in the development of preeclampsia is still being clarified. It is obvious that monocytes can change the cytokine profile of blood plasma of patients with preeclampsia, enhance the reactions of innate immunity, including inflammation. The chemokine IL8 and the gene encoding it, as well as the pseudogene of the adhesion receptor, can become a potential therapeutic target in the treatment of this dangerous gestational pathology.
关键词
作者简介
Polina Vishnyakova
V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology
Email: vishnyakova-pa@rudn.ru
ORCID iD: 0000-0001-8650-8240
SPIN 代码: 3406-3866
Moscow, Russian Federation
Viktoriia Kiseleva
V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology
Email: vishnyakova-pa@rudn.ru
ORCID iD: 0000-0002-3001-4820
SPIN 代码: 2698-1448
Moscow, Russian Federation
Anastasiya Poltavets
V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology
Email: vishnyakova-pa@rudn.ru
ORCID iD: 0000-0002-1619-3500
SPIN 代码: 6782-1376
Moscow, Russian Federation
V. Karyagina
V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology
Email: vishnyakova-pa@rudn.ru
ORCID iD: 0009-0001-3484-9577
Moscow, Russian Federation
Aida Bagdasarian
V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology
Email: vishnyakova-pa@rudn.ru
Moscow, Russian Federation
Evgeny Knyazev
National Research University Higher School of Economics;M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry
编辑信件的主要联系方式.
Email: vishnyakova-pa@rudn.ru
ORCID iD: 0000-0002-9414-2573
SPIN 代码: 4972-5652
Moscow, Russian Federation
Kamilla Muminova
V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology
Email: vishnyakova-pa@rudn.ru
ORCID iD: 0000-0003-2708-4366
SPIN 代码: 2893-9966
Moscow, Russian Federation
Zulfiya Khodzhaeva
V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology
Email: vishnyakova-pa@rudn.ru
ORCID iD: 0000-0001-8159-3714
SPIN 代码: 9714-5970
Moscow, Russian Federation
Andrey Elchaninov
V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology; Research Institute of Human Morphology named after Academician A.P. Avtsyn, Russian Scientific Center of Surgery named after Academician B.V. Petrovsky
Email: vishnyakova-pa@rudn.ru
ORCID iD: 0000-0002-2392-4439
SPIN 代码: 5160-9029
Moscow, Russian Federation
Gennady Sukhikh
V.I. Kulakov National Medical Research Center for Obstetrics, Gynecology and Perinatology
Email: vishnyakova-pa@rudn.ru
ORCID iD: 0000-0002-7712-1260
SPIN 代码: 9374-5710
Moscow, Russian Federation
参考
- Khan N, Andrade W, De Castro H, Wright A, Wright D, Nicolaides KH. Impact of new definitions of preeclampsia on incidence and performance of first-trimester screening. Ultrasound in Obstetrics & Gynecology. 2020;55(1):50–57. doi: 10.1002/uog.21867
- Pennington KA, Schlitt JM, Jackson DL, Schulz LC, Schust DJ. Preeclampsia: multiple approaches for a multifactorial disease. Disease models & mechanisms. 2012;5(1):9–18. doi: 10.1242/dmm.008516
- Jim B, Karumanchi SA. Preeclampsia: Pathogenesis, Prevention, and Long-Term Complications. Seminars in Nephrology. 2017. doi: 10.1016/j.semnephrol.2017.05.011
- Zhou W, Chen Y, Zheng Y, Bai Y, Yin J, Wu X–X, Hong M, Liang L, Zhang J, Gao Y, Sun N, Li J, Zhang Y, Wu L, Jin X, Niu J. Characterizing immune variation and diagnostic indicators of preeclampsia by single-cell RNA sequencing and machine learning. Communications Biology. 2024;7(1):32. doi: 10.1038/s42003-023-05669
- Liu Y, Zhang Y, Du L, Chen D. The genetic relationships between immune cell traits, circulating inflammatory proteins and preeclampsia/eclampsia. Frontiers in Immunology. 2024;15. doi: 10.3389/fimmu.2024.1389843
- Hu J, Guo Q, Liu C, Yu Q, Ren Y, Wu Y, Li Q, Li Y, Liu J. Immune cell profiling of preeclamptic pregnant and postpartum women by single-cell RNA sequencing. International Reviews of Immunology. 2024;43(1):1–12. doi: 10.1080/08830185.2022.2144291
- Torres-Torres J, Espino-y-Sosa S, Martinez-Portilla R, Borboa-Olivares H, Estrada-Gutierrez G, Acevedo-Gallegos S, Ruiz-Ramirez E, Velasco-Espin M, Cerda-Flores P, Ramirez-Gonzalez A, Rojas-Zepeda L. A Narrative Review on the Pathophysiology of Preeclampsia. International Journal of Molecular Sciences. 2024;25(14):7569. doi: 10.3390/ijms25147569
- Nagashima M, Takeda Y, Saitoh S, Sabrina S, Araki A, Nagase S, Asao H. A loss of tuning of both pro-coagulant and inflammatory responses in monocytes in patients with preeclampsia. Journal of Reproductive Immunology. 2024;166:104334. doi: 10.1016/j.jri.2024.104334.
- Al-ofi E, Coffelt SB, Anumba DO. Monocyte subpopulations from pre-eclamptic patients are abnormally skewed and exhibit exaggerated responses to toll-like receptor ligands. PLoS ONE. 2012;7(7): e42217. doi: 10.1371/journal.pone.0042217
- Jabalie G, Ahmadi M, Koushaeian L, Eghbal-Fard S, Mehdizadeh A, Kamrani A, Abdollahi-Fard S, Farzadi L, Hojjat- Farsangi M, Nouri M, Yousefi M. Metabolic syndrome mediates proinflammatory responses of inflammatory cells in preeclampsia. American Journal of Reproductive Immunology. 2019;81(3): e13086. doi: 10.1111/aji.13086
- Admati I, Skarbianskis N, Hochgerner H, Ophir O, Weiner Z, Yagel S, Solt I, Zeisel A. Two distinct molecular faces of preeclampsia revealed by single-cell transcriptomics. Med. 2023;4(10):687–709.e7. doi: 10.1016/j.medj.2023.07.005
- Alahakoon TI, Medbury H, Williams H, Fewings N, Wang XM, Lee VW. Distribution of monocyte subsets and polarization in preeclampsia and intrauterine fetal growth restriction. Journal of Obstetrics and Gynaecology Research. 2018;44(12):2135–2148. doi: 10.1111/jog.13770
- Tarca AL, Romero R, Erez O, Gudicha DW, Than NG, Benshalom-Tirosh N, Pacora P, Hsu C-D, Chaiworapongsa T, Hassan SS, Gomez-Lopez N. Maternal whole blood mRNA signatures identify women at risk of early preeclampsia: a longitudinal study. The Journal of Maternal-Fetal and Neonatal Medicine. 2021;34(21):3463–3474. doi: 10.1080/14767058.2019.1685964
- Vishnyakova P, Kuznetsova M, Poltavets A, Fomina M, Kiseleva V, Muminova K, Potapova A, Khodzhaeva Z, Pyregov A, Trofimov D, Elchaninov A, Sukhikh G, Fatkhudinov T. Distinct gene expression patterns for CD14++ and CD16++ monocytes in preeclampsia. Scientific Reports. 2022;12(1):15469. doi: 10.1038/s41598-022-19847-5
- Liu Y, Du L, Gu S, Liang J, Huang M, Huang L, Lai S, Zhang S, Tu Z, Sun W, Chen D, Chen J. Identification of the role of DAB2 and CXCL8 in uterine spiral artery remodeling in early-onset preeclampsia. Cellular and Molecular Life Sciences. 2024;81(1):180. doi: 10.1007/s00018-024-05212-4
- Ullah A, Zhao J, Singla RK, Shen B. Pathophysiological impact of CXC and CX3CL1 chemokines in preeclampsia and gestational diabetes mellitus. Frontiers in Cell and Developmental Biology. 2023;11. doi: 10.3389/fcell.2023.1272536 doi: 10.3389/fcell.2023.1272536
- Gormley M, Ona K, Kapidzic M, Garrido-Gomez T, Zdravkovic T, Fisher SJ. Preeclampsia: novel insights from global RNA profiling of trophoblast subpopulations. American Journal of Obstetrics and Gynecology. 2017;217(2):200.e1–200.e17. doi: 10.1016/j.ajog.2017.03.017
- Matsushima K, Yang D, Oppenheim JJ. Interleukin‑8: An evolving chemokine. Cytokine. 2022;153:155828. doi: 10.1016/j.cyto.2022.155828
- Wong YP, Wagiman N, Tan JW De, Hanim BS, Rashidan MSH, Fong KM, Norhazli NN, Qrisha Y, Shah RNRA, Mustangin M, Zakaria H, Chin SX, Tan GC. Loss of CXC–Chemokine Receptor 1 Expression in Chorioamnionitis Is Associated with Adverse Perinatal Outcomes. Diagnostics. 2022;12(4):882. doi: 10.3390/diagnostics12040882
- Farias-Jofre M, Romero R, Xu Y, Levenson D, Tao L, Kanninen T, Galaz J, Arenas-Hernandez M, Liu Z, Miller D, Bhatti G, Seyerle M, Tarca AL, Gomez-Lopez N. Differential immunophenotype of circulating monocytes from pregnant women in response to viral ligands. BMC Pregnancy and Childbirth. 2023;23(1):323. doi: 10.1186/s12884-023-05562-0
- Dungy LJ, Siddiqi TA, Khan S. C-jun and jun-B oncogene expression during placental development. American Journal of Obstetrics and Gynecology. 1991;165(6):1853–1856. doi: 10.1016/0002-9378(91)90045-S
- Hannemann N, Jordan J, Paul S, Reid S, Baenkler H-W, Sonnewald S, Bäuerle T, Vera J, Schett G, Bozec A. The AP‑1 Transcription Factor c-Jun Promotes Arthritis by Regulating Cyclooxygenase‑2 and Arginase‑1 Expression in Macrophages. The Journal of Immunology. 2017;198(9):3605–3614. doi: 10.4049/jimmunol.1601330
- Schreiber M, Kolbus A, Piu F, Szabowski A, Mohle-Steinlein U, Tian J, Karin M, Angel P, Wagner EF. Control of cell cycle progression by c-Jun is p53 dependent. Genes & Development. 1999;13(5):607–619. doi: 10.1101/gad.13.5.607
- Matsushima K, Yang D, Oppenheim JJ. Interleukin‑8: An evolving chemokine. Cytokine. 2022;153:155828. doi: 10.1016/j.cyto.2022.155828
- Schettini JA de C, Gomes TV, Santos Barreto AK, da Silva Júnior CD, da Matta M, Coutinho ICN, de Oliveira M do CVC, Torres LC. High Levels of CXCL8 and Low Levels of CXCL9 and CXCL10 in Women with Maternal RhD Alloimmunization. Frontiers in Immunology. 2017;8. doi: 10.3389/fimmu.2017.00700 doi: 10.3389/fimmu.2017.00700.
- Hamann J, Kwakkenbos MJ, de Jong EC, Heus H, Olsen AS, van Lier RAW. Inactivation of the EGF-TM7 receptor EMR4 after the Pan-Homo divergence. European Journal of Immunology. 2003;33(5):1365–1371. doi: 10.1002/eji.200323881
- Vilsmaier T, Amann N, Löb S, Schmoeckel E, Kuhn C, Zati zehni A, Meister S, Beyer S, Kolben TM, Becker J, Mumm J, Mahner S, Jeschke U, Kolben T. The decidual expression of Interleukin 7 is upregulated in early pregnancy loss. American Journal of Reproductive Immunology. 2021;86(3). doi: 10.1111/aji.13437 doi: 10.1111/aji.13437
- Saifi B, Rezaee SA, Tajik N, Ahmadpour ME, Ashrafi M, Vakili R, SoleimaniAsl S, Aflatoonian R, Mehdizadeh M. Th17 cells and related cytokines in unexplained recurrent spontaneous miscarriage at the implantation window. Reproductive BioMedicine Online. 2014;29(4):481–489. doi: 10.1016/j.rbmo.2014.06.008
- Zhou JX, Yang X, Ning S, Wang L, Wang K, Zhang Y, Yuan F, Li F, Zhuo DD, Tang L, Zhuo D. Identification of KANSARL as the first cancer predisposition fusion gene specific to the population of European ancestry origin. Oncotarget. 2017;8(31):50594–50607. doi: 10.18632/oncotarget.16385
- Kapellos TS, Bonaguro L, Gemünd I, Reusch N, Saglam A, Hinkley ER, Schultze JL. Human monocyte subsets and phenotypes in major chronic inflammatory diseases. Frontiers in Immunology. 2019;10(AUG):2035. doi: 10.3389/FIMMU.2019.02035/BIBTEX
- Bernier E, Couture C, Borchers A, Brien M-E, Graham CH, Girard S. Circulating Immune Cells from Early- and Late-onset Pre-eclampsia Displays Distinct Profiles with Differential Impact on Endothelial Activation. The Journal of Immunology. 2024;213(9):1292–1304. doi: 10.4049/jimmunol.2400196
- Pinheiro MB, Martins-Filho OA, Mota APL, Alpoim PN, Godoi LC, Silveira ACO, Teixeira-Carvalho A, Gomes KB, Dusse LM. Severe preeclampsia goes along with a cytokine network disturbance towards a systemic inflammatory state. Cytokine. 2013;62(1):165–173. doi: 10.1016/j.cyto.2013.02.027
- Salazar Garcia MD, Mobley Y, Henson J, Davies M, Skariah A, Dambaeva S, Gilman-Sachs A, Beaman K, Lampley C, Kwak-Kim J. Early pregnancy immune biomarkers in peripheral blood may predict preeclampsia. Journal of Reproductive Immunology. 2018;125:25–31. doi: 10.1016/j.jri.2017.10.048
- Liu K, Fu Q, Liu Y, Wang C. An integrative bioinformatics analysis of microarray data for identifying hub genes as diagnostic biomarkers of preeclampsia. Bioscience Reports. 2019;39(9). doi: 10.1042/BSR20190187 doi: 10.1042/BSR20190187
- Torregrosa-Carrión R, Piñeiro-Sabarís R, Siguero-Álvarez M, Grego-Bessa J, Luna-Zurita L, Fernandes VS, MacGrogan D, Stainier DYR, de la Pompa JL. Adhesion G protein–coupled receptor Gpr126/Adgrg6 is essential for placental development. Science Advances. 2021;7(46). doi: 10.1126/sciadv.abj5445 doi: 10.1126/sciadv.abj5445.
- Bogias KJ, Pederson SM, Leemaqz S, Smith MD, McAninch D, Jankovic-Karasoulos T, McCullough D, Wan Q, Bianco-Miotto T, Breen J, Roberts CT. Placental Transcription Profiling in 6–23 Weeks’ Gestation Reveals Differential Transcript Usage in Early Development. International Journal of Molecular Sciences. 2022;23(9):4506. doi: 10.3390/ijms23094506
- Shen H, Jin M, Gu S, Wu Y, Yang M, Hua X. CD97 Is Decreased in Preeclamptic Placentas and Promotes Human Trophoblast Invasion Through PI3K/Akt/mTOR Signaling Pathway. Reproductive Sciences. 2020;27(8):1553–1561. doi: 10.1007/s43032-020-00183‑w
- Lala T, Hall RA. Adhesion G protein-coupled receptors: structure, signaling, physiology, and pathophysiology. Physiological Reviews. 2022;102(4):1587–1624. doi: 10.1152/physrev.00027.2021
- Paquette AG, Shynlova O, Kibschull M, Price ND, Lye SJ. Comparative analysis of gene expression in maternal peripheral blood and monocytes during spontaneous preterm labor. American Journal of Obstetrics and Gynecology. 2018;218(3):345.e1–345.e30. doi: 10.1016/j.ajog.2017.12.234
- Majewska M, Lipka A, Paukszto L, Jastrzebski JP, Szeszko K, Gowkielewicz M, Lepiarczyk E, Jozwik M, Majewski MK. Placenta Transcriptome Profiling in Intrauterine Growth Restriction (IUGR). International Journal of Molecular Sciences. 2019;20(6):1510. doi: 10.3390/ijms20061510
补充文件

