Molecular genetic background for the development of early neurodegenerative processes in retina

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

All neurodegenerative retinal diseases are characterized by decreased metabolic and regenerative processes, impaired microcirculation, and structural abnormalities of the retina. Age is a significant risk factor for age-related macular degeneration (AMD), which is the primary cause of irreversible vision loss in individuals aged over 60 years. Since its pathogenesis is not completely understood, there is currently no effective treatment for AMD. The pathogenesis of age-related retinal changes is still uncertain, despite being grounded on alterations in characteristic features of the retina due to aging. The molecular events preceding and accompanying clinical disease manifestations pose a challenge for human study. The retina shares a uniform basic structure throughout all vertebrate species, enabling the use of animals in exploring the mechanisms responsible for maintaining a healthy physiological structure of the retina and for the pathogenesis of numerous diseases. With the knowledge acquired, novel remedies for these ailments can be developed for humans [1].

The study analyzed the OXYS rat line, known for its premature aging and retinopathy which mimics the dry form of AMD in humans. The aim was to examine how postnatal retinal neurogenesis changes contribute to the development of AMD-like retinopathy in these rats. By approximately 3–4 months of age, all structural components of the retina in OXYS rats demonstrate pathological changes, including vessels (both choroidal and intraretinal), Bruch’s membrane, photoreceptors, ganglion neurons, interneurons, and RPE. This is supported by our research findings [2, 3]. By approximately 3–4 months of age, all structural components of the retina in OXYS rats demonstrate pathological changes, including vessels (both choroidal and intraretinal), Bruch’s membrane, photoreceptors, ganglion neurons, interneurons, and RPE. One hundred percent of OXYS rats exhibit clinical symptoms of retinopathy. As they age, pathological changes intensify and coincide with photoreceptor death, hindered autophagy, and active gliosis [3–5]. Due to its limited capacity for neurogenesis, the adult mammalian retina’s structural and functional properties during its development can exert lasting impacts on ontogeny.

We discovered that OXYS rats exhibited a notable reduction in the population of amacrine neurons during birth, along with an increment in the populations of ganglion and horizontal neurons in the retina as a form of compensation. The postnatal development of the rat retina is finished by the 20th day of life. In OXYS rats, this development is distinct in that it causes a shift in the timing of differentiation of bipolar cells and photoreceptors, leading to the later formation of the outer retinal layer. This layer is composed of synapses between photoreceptors, bipolar cells, and horizontal cells. The delayed onset of synaptogenesis in the OXYS rat retina results in elevated apoptosis levels and a heightened reduction of neurons. Consequently, the processes of photoreceptor differentiation and synaptogenesis remain incomplete by the time of eye opening in OXYS rats. This incomplete development can significantly impact the retina’s structure and functions. These findings indicate that a delay in retinal formation could serve as a predictor of the development of AMD in OXYS rats, and potentially this disease in humans.

全文:

All neurodegenerative retinal diseases are characterized by decreased metabolic and regenerative processes, impaired microcirculation, and structural abnormalities of the retina. Age is a significant risk factor for age-related macular degeneration (AMD), which is the primary cause of irreversible vision loss in individuals aged over 60 years. Since its pathogenesis is not completely understood, there is currently no effective treatment for AMD. The pathogenesis of age-related retinal changes is still uncertain, despite being grounded on alterations in characteristic features of the retina due to aging. The molecular events preceding and accompanying clinical disease manifestations pose a challenge for human study. The retina shares a uniform basic structure throughout all vertebrate species, enabling the use of animals in exploring the mechanisms responsible for maintaining a healthy physiological structure of the retina and for the pathogenesis of numerous diseases. With the knowledge acquired, novel remedies for these ailments can be developed for humans [1].

The study analyzed the OXYS rat line, known for its premature aging and retinopathy which mimics the dry form of AMD in humans. The aim was to examine how postnatal retinal neurogenesis changes contribute to the development of AMD-like retinopathy in these rats. By approximately 3–4 months of age, all structural components of the retina in OXYS rats demonstrate pathological changes, including vessels (both choroidal and intraretinal), Bruch’s membrane, photoreceptors, ganglion neurons, interneurons, and RPE. This is supported by our research findings [2, 3]. By approximately 3–4 months of age, all structural components of the retina in OXYS rats demonstrate pathological changes, including vessels (both choroidal and intraretinal), Bruch’s membrane, photoreceptors, ganglion neurons, interneurons, and RPE. One hundred percent of OXYS rats exhibit clinical symptoms of retinopathy. As they age, pathological changes intensify and coincide with photoreceptor death, hindered autophagy, and active gliosis [3–5]. Due to its limited capacity for neurogenesis, the adult mammalian retina’s structural and functional properties during its development can exert lasting impacts on ontogeny.

We discovered that OXYS rats exhibited a notable reduction in the population of amacrine neurons during birth, along with an increment in the populations of ganglion and horizontal neurons in the retina as a form of compensation. The postnatal development of the rat retina is finished by the 20th day of life. In OXYS rats, this development is distinct in that it causes a shift in the timing of differentiation of bipolar cells and photoreceptors, leading to the later formation of the outer retinal layer. This layer is composed of synapses between photoreceptors, bipolar cells, and horizontal cells. The delayed onset of synaptogenesis in the OXYS rat retina results in elevated apoptosis levels and a heightened reduction of neurons. Consequently, the processes of photoreceptor differentiation and synaptogenesis remain incomplete by the time of eye opening in OXYS rats. This incomplete development can significantly impact the retina’s structure and functions. These findings indicate that a delay in retinal formation could serve as a predictor of the development of AMD in OXYS rats, and potentially this disease in humans.

ADDITIONAL INFORMATION

Funding sources. This study was supported by the Russian Science Foundation, grant No. 21-15-00047.

×

作者简介

D. Telegina

Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences

编辑信件的主要联系方式.
Email: telegina@bionet.nsc.ru
俄罗斯联邦, Novosibirsk

O. Kozhevnikova

Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences

Email: telegina@bionet.nsc.ru
俄罗斯联邦, Novosibirsk

N. Kolosova

Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences

Email: telegina@bionet.nsc.ru
俄罗斯联邦, Novosibirsk

参考

  1. Telegina DV, Kozhevnikova OS, Antonenko AK, Kolosova NG. Features of retinal neurogenesis as a key factor of age-related neurodegeneration: Myth or reality? International Journal of Molecular Sciences. 2021;22(14):7373. doi: 10.3390/ijms22147373
  2. Kolosova NG, Kozhevnikova OS, Muraleva NA, et al. SkQ1 as a Tool for Controlling Accelerated Senescence Program: Experiments with OXYS Rats. Biochemistry. 2022;87(12):1552–1562. doi: 10.1134/S0006297922120124
  3. Telegina DV, Kozhevnikova OS, Bayborodin SI, Kolosova NG. Contributions of age-related alterations of the retinal pigment epithelium and of glia to the AMD-like pathology in OXYS rats. Scientific Reports. 2017;7:41533. doi: 10.1038/srep41533
  4. Kozhevnikova OS, Telegina DV, Devyatkin VA, Kolosova NG. Involvement of the autophagic pathway in the progression of AMD-like retinopathy in senescence-accelerated OXYS rats. Biogerontology. 2018;19(3-4):223–235. doi: 10.1007/s10522-018-9751-y
  5. Kozhevnikova OS, Telegina DV, Tyumentsev MA, Kolosova NG. Disruptions of autophagy in the rat retina with age during the development of age-related-macular-degeneration-like retinopathy. International Journal of Molecular Sciences. 2019;20(19):4804. doi: 10.3390/ijms20194804

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2023

Creative Commons License
此作品已接受知识共享署名-非商业性使用-禁止演绎 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».