Алгоритм идентификации лиц и преступных действий

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В настоящее существует ряд неразрешенных проблем в идентификации образов. Если у человека будет что-нибудь на лице, например маска или очки, или в какой-нибудь момент часть лица будет прикрыта одеждой, волосами или предметом, то система видеонаблюдения может потерять человека из виду. Идентификация значительно ухудшается, и распознавание человека происходит только спустя некоторое время. Целью данной работы является совершенствование существующих методов распознавания. В работе предлагается алгоритм, который основан на мультикаскадном методе и методе детектировании объектов. Данный алгоритм способен определять человека по действиям преступного характера и по лицу за счет выделения некоторых частей лица в виде квадратов и прямоугольников при помощи библиотеки компьютерного зрения. В результате тестирования алгоритм показал высокую точность определения с использованием видеускорителя объемом 16 ГБ видеопамяти.

Об авторах

Намир Мохамед Хади

Российский технологический университет МИРЭА

Email: namir.1998@gmail.com
студент Москва, Российская Федерация

Список литературы

  1. Выделение и распознавание лиц [Электронный ресурс]. URL: http://wiki.technicalvision.ru/index.php/Выделение_и_распознавание_лиц (дата обращения: 20.06.2022).
  2. Wang Q., Wu T., Zheng T., Guo G. Hierarchical pyramid diverse attention networks for face recognition [Electronic resource]. URL: https://openaccess.thecvf.com/content_CVPR_2020/papers/Wang_Hierarchical_Pyramid_Diverse_Attention_Networks_for_Face_Recognition_CVPR_2020_paper.pdf (data of accesses: 20.06.2022).
  3. Wang Q., Guo G. LS-CNN Characterizing local patches at multiple scales for face recognition // IEEE Transactions on Information Forensics and Security. 2020. No. 15. Pp. 1640-1653.
  4. Hu J., Shen L., Sun G. Squeeze-and-excitation networks [Electronic resource]. URL: https://arxiv.org/pdf/1709.01507.pdf (data of accesses: 22.06.2022).
  5. Parchami M., Bashbaghi S., Granger E., Sayed S. Using deep autoencoders to learn robust domain-invariant representations for still-to-video face recognition [Electronic resource]. URL: https://www.researchgate.net/publication/317951983_Using_Deep_Autoencoders_to_Learn_Robust_Domain-Invariant_Representations_for_Still-to-Video_Face_Recognition (data of accesses: 23.06.2022). @
  6. Ding C., Tao D. Trunk-branch ensemble convolutional neural networks for video-based face recognition [Electronic resource]. URL: https://arxiv.org/pdf/1607.05427.pdf (data of accesses: 23.06.2022).
  7. Parchami M., Bashbaghi S., Granger E. Video-based face recognition using ensemble of haar-like deep convolutional neural networks [Electronic resource]. URL: https://www.researchgate.net/publication/314115143_Video-Based_Face_Recognition_Using_Ensemble_of_Haar-Like_Deep_Convolutional_Neural_Networks (data of accesses: 25.06.2022).
  8. Szegedy C., Liu W., Jia Y. et al. Going deeper with convolutions [Electronic resource]. URL: https://arxiv.org/pdf/1409.4842.pdf (data of accesses: 25.06.2022).
  9. Schroff F., Kalenichenko D., Philbin J. Facenet: A unified embedding for face recognition and clustering [Electronic resource]. URL: https://arxiv.org/pdf/1503.03832.pdf (data of accesses: 26.06.2022).
  10. Huang Z., Shan S., Wang R. et al. A benchmark and comparative study of video-based face recognition on cox face database // IP IEEE Trans. 2015. No. 24. Pp. 5967-5981.
  11. Bashbaghi S., Granger E., Sabourin R., Parchami M. Deep learning architectures for face recognition in video surveillance [Electronic resource]. URL: https://arxiv.org/pdf/1802.09990.pdf (data of accesses: 27.06.2022).
  12. Sultani W., Chen C., Shah M. Real-world anomaly detection in surveillance videos [Electronic resource]. URL: https://arxiv.org/pdf/1801.04264.pdf (data of accesses: 27.06.2022).
  13. Азаров Д. Метод распознавания лиц Виолы-Джонса (Viola-Jones) [Электронный ресурс]. URL: https://oxozle.com/2015/04/11/metod-raspoznavaniya-lic-violy-dzhonsa-viola-jones/ (дата обращения: 27.06.2022).
  14. Yang B., Yan J., Lei Z., Li S. Z. Aggregate channel features for multi-view face detection [Electronic resource]. URL: https://arxiv.org/pdf/1407.4023.pdf (data of accesses: 27.06.2022).
  15. Pham M.T., Gao Y., Hoang V.D.D., Cham T.J. Fast polygonal integration and its application in extending haar-like features to improve object detection [Electronic resource]. URL: https://www.researchgate.net/publication/221362661_Fast_Polygonal_Integration_and_Its_Application_in_Extending_Haarlike_Features_to_Improve_Object_Detection (data of accesses: 27.06.2022).
  16. Zhu Q., Yeh M.C., Cheng K.T., Avidan S. Fast human detection using a cascade of histograms of oriented gradients [Electronic resource]. URL: https://www.merl.com/publications/docs/TR2006-068.pdf (data of accesses: 28.06.22).
  17. Zhang K., Zhang Z., Li Z. Joint face detection and alignment using multi-task cascaded convolutional networks [Electronic resource]. URL: https://kpzhang93.github.io/MTCNN_face_detection_alignment/paper/spl.pdf (data of accesses: 28.06.22).
  18. Li H., Lin Z., Shen X., Brandt J., Hua G. A convolutional neural network cascade for face detection [Electronic resource]. URL: https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Li_A_Convolutional_Neural_2015_CVPR_paper.pdf (data of accesses: 28.06.2022).
  19. PReLU [Электронный ресурс]. URL: https://congyuzhou.medium.com/prelu-e0bc339d9c01 (дата обращения 28.06.2022).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML


Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».