Изучение воздействия растительности наземных экосистем на снижение углеродного следа на территории Российской Федерации

Обложка

Цитировать

Полный текст

Аннотация

Изучаются растительные сообщества наземных экосистем Российской Федерации с точки зрения их способности уменьшать углеродный след в результате секвестрации углекислого газа. Приводится классификация типовых растительных сообществ и деление территории в зависимости от природно-климатических и региональных характеристик с дальнейшим предоставлением значений удельной поглощающей способности произрастающих растительных сообществ соответственно представленному делению. С целью осуществления оценки биомассы растительности, а также динамики ее изменения проведен анализ метода дистанционного зондирования как наиболее предпочтительного для определения биомассы в режиме реального времени. Дана характеристика используемых в настоящее время систем дистанционного зондирования, в том числе IKO-NOS, Quickbird, Worldview, ZY-3, SPOT, Sentinel, Landsat и MODIS. Перечислены основные показатели, применяемые для индексационной оценки биомассы растительности, с последующим прогнозированием на их основе эффективности поглощения углекислого газа растительными сообществами.

Об авторах

Мария Анатольевна Пашкевич

Санкт-Петербургский горный университет

Email: mpash@spmi.ru
ORCID iD: 0000-0001-7020-8219

доктор технических наук, заведующая кафедрой геоэкологии

Российская Федерация, 199106, Санкт-Петербург, Васильевский остров, 21 линия, д. 2

Анна Эдуардовна Коротаева

Санкт-Петербургский горный университет

Автор, ответственный за переписку.
Email: s205056@stud.spmi.ru
ORCID iD: 0000-0002-0211-6782

аспирант

Российская Федерация, 199106, Санкт-Петербург, Васильевский остров, 21 линия, д. 2

Список литературы

  1. Di Vita G, Pilato M, Pecorino B, Brun F, D’Amico M. A Review of the role of vegetal ecosystems in CO2 capture. Sustain. 2017;9:1840. http://doi.org/10.3390/SU9101840
  2. Fyodorov BG, Moiseev BN, Sinyak YuV. Absorption capacity of Russian forests and carbon dioxide emissions by energy facilities. Problemy Prognozirovaniya. 2011; 126(3):127-42. (In Russ.)
  3. Akita N, Ohe Y. Sustainable forest management evaluation using carbon credits: from production to environmental forests. Forests. 2021;12(8):1-18. http://doi.org/10.3390/f12081016
  4. Cherepovitsyn AE, Sidorova AE, Smirnova AE. Feasibility of using CO2 sequestration technologies in Russia. Neftegazovoe Delo. 2013;(5):459-473. (In Russ.)
  5. Krasutsky BV. Absorption of carbon dioxide woods of Chelyabinsk region: modern ecological and economical aspects. Tyumen State Univ. Herald Nat. Resour. Use Ecol. 2018;4(3):57-68. http://doi.org/10.21684/2411-7927-2018-4-3-57-68
  6. Koroleva NE. The main types of plant communities “Russian Svalbard.” Trudy Karel’skogo Nauchnogo Centra RAN. 2016;(7):3-26. (In Russ.) http://doi.org/10.17076/bg323
  7. Bykova MV, Alekseenko AV, Pashkevich MA, Drebenstedt C. Thermal desorption treatment of petroleum hydrocarbon-contaminated soils of tundra, taiga, and forest steppe landscapes. Environю. Geochem. Health. 2021;43(6):2331-2346. http://doi.org/10.1007/S10653-020-00802-0
  8. Kurbatova AI. Analytical review of modern studies of changes in the biotic components of the carbon cycle. RUDN Journal of Ecology and Life Safety. 2020;28(4):428-438. (In Russ.) http://doi.org/10.22363/2313-2310-2020-28-4-428-438
  9. Zamolodchikov D, Grabovskiy V, Kurc V. Managing the carbon balance of Russia’s forests: past, present and future. Ustojchivoe Lesopol'zovanie. 2014;2(39):23-31. (In Russ.)
  10. Mancini MS, Galli A, Niccolucci V, Lin D, Bastianoni S, Wackernagel M, Marchettini N. Ecological footprint: refining the carbon footprint calculation. Ecol. Indic. 2016;61: 390-403. http://doi.org/10.1016/j.ecolind.2015.09.040
  11. Xu D, Wang H, Xu W, Luan Z, Xu X. LiDAR applications to estimate forest biomass at individual tree scale: opportunities, challenges and future perspectives. Forests. 2021;12(5):1-19. http://doi.org/10.3390/f12050550
  12. Calders K, Jonckheere I, Nightingale J, Vastaranta M. Remote sensing technology applications in forestry and REDD+. Forests. 2020;11(2):10-13. http://doi.org/10.3390/f11020188
  13. Chen L, Ren C, Zhang B, Wang Z, Xi Y. Estimation of forest above-ground biomass by geographically weighted regression and machine learning with sentinel imagery. Forests. 2018;9(10):1-20. http://doi.org/10.3390/f9100582
  14. Kumar L, Mutanga O. Remote sensing of above-ground biomass. Remote Sens. 2017;9(9):1-8. http://doi.org/10.3390/rs9090935
  15. Adamovich TA, Kantor GYa, Ashikhmina TYa, Savinykh VP. The analysis of seasonal and long-term dynamics of the vegetative NDVI index in the territory of the State Nature Reserve “Nurgush”. Teoreticheskaya i Prikladnaya Ecologiya. 2018;(1):18-24. (In Russ.)
  16. Ferwerda JG, Skidmore AK, Mutanga O. Nitrogen detection with hyperspectral normalized ratio indices across multiple plant species. Int. J. Remote Sens. 2005;26(18):4083-4095. http://doi.org/10.1080/01431160500181044
  17. Seward A, Ashraf S, Reeves R, Bromley C. Improved environmental monitoring of surface geothermal features through comparisons of thermal infrared, satellite remote sensing and terrestrial calorimetry. Geothermics. 2018;73:60-73. http://doi.org/10.1016/j.geothermics.2018.01.007
  18. Adão T, Hruška J, Pádua L, Bessa J, Peres E, Morais R, Sousa JJ. Hyperspectral imaging: a review on UAV-based sensors, data processing and applications for agriculture and forestry. Remote Sens. 2017;9(11):1110. http://doi.org/10.3390/rs9111110
  19. Strizhenok AV, Ivanov AV. Ecological assessment of the current state of environmental components on the territory of the impact of cement production industry. J. Ecol. Eng. 2017;18(6):160-165. http://doi.org/10.12911/22998993/76850
  20. Kusumaning Asri A, Lee HY, Pan WC, Tsai HJ, Chang HT, Candice Lung SC, Su HJ, Yu CP, Ji JS, Wu CD, Spengler JD. Is green space exposure beneficial in a developing country? Landsc Urban Plan. 2021;215:104226. http://doi.org/10.1016/J.LANDURBPLAN.2021.104226
  21. John J, Jaganathan R, Dharshan Shylesh DS. Mapping of Soil moisture index using optical and thermal remote sensing. Lect. Notes Civ. Eng. 2022;171:759-767. http://doi.org/10.1007/978-3-030-80312-4_65
  22. Laefer DF. Harnessing remote sensing for civil engineering: then, now, and tomorrow. Lecture Notes in Civil Engineering. 2020;33:3-30.
  23. Liu N, Harper RJ, Handcock RN, Evans B, Sochacki SJ, Dell B, Walden LL, Liu S. Seasonal timing for estimating carbon mitigation in revegetation of abandoned agricultural land with high spatial resolution remote sensing. Remote Sens. 2017;9(6):545. http://doi.org/10.3390/rs9060545
  24. Chevrel S, Bourguignon A. Application of optical remote sensing for monitoring environmental impacts of mining: from exploitation to postmining. L. Surf. Remote Sens. Environ. Risks. Elsevier; 2016. p. 191-220. http://doi.org/10.1016/B978-1-78548-105-5.50006-2
  25. IUCN and WRI. A guide to the Restoration Opportunities Assessment Methodology (ROAM): assessing forest landscape restoration opportunities at the national or sub-national level. Switzerland: IUCN; 2014.
  26. Veludo G, Cunha M, Sá MM, Oliveira-Silva C. Offsetting the impact of CO2 emissions resulting from the transport of Maiêutica’s academic campus community. Sustainability. 2021;13:10227. https://doi.org/10.3390/su131810227
  27. Asner GP, Powell GVN, Mascaro J, Knapp DE, Clark JK, Jacobson J, Kennedy-Bowdoin T, Balaji A, Paez-Acosta G, Victoria E., Secada L., Valqui M, Hughes RF. High-resolution forest carbon stocks and emissions in the Amazon. Proc. Natl. Acad. Sci. USA. 2010;107(38):16738-16742. http://doi.org/10.1073/pnas.1004875107
  28. Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais Ph, Jackson RB, Pacala SW, McGuire AD, Piao S, Rautiainen A, Sitch S, Hayes D. A large and persistent carbon sink in the world’s forests. Science. 2011;333(6045):988-993. http://doi.org/10.1126/science.1201609
  29. Bernal B, Murray LT, Pearson TRH. Global carbon dioxide removal rates from forest landscape restoration activities. Carbon Balance Manag. 2018;13(1), 22. https://doi.org/10.1186/s13021-018-0110-8

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».