The digital shadow and twin feasibility representation model for the radically new products competitiveness

Capa

Citar

Texto integral

Resumo

The study examines the use of multidimensional scenario modeling (MSM) for the development and production of fundamentally new products, taking into account the variability of consumer requirements and market conditions. The focus is on the integration of end-to-end digital technologies, an approach to creating a dual digital product, and product lifecycle management based on IT systems. The purpose of the research is to develop a new methodology for the formation of the technical and economic appearance of a product based on end-to-end digital technologies and digital twins, which makes it possible to model life cycle scenarios and choose optimal solutions with minimal costs. The study uses methods of literature analysis, benchmarking and comparative evaluation of statistical data to study the competitiveness of radically new products using the concepts of digital twin and digital shadow. Special attention is paid to the analysis of the regulatory framework and classes of digital twin models, which makes it possible to assess the technological feasibility, market potential and cost-effectiveness of innovative solutions. An integrated approach provides a systematization of the factors influencing the positioning of new products in the context of digital transformation. The features, including economic ones, of digital product models, as well as the regulatory framework of the subject area are considered. The classification of types of models and types of digital analogues of the product is given. The problem of the research lies in the fact that the traditional parametric approach to determining the technical and economic characteristics of new products, based on the linear improvement of analogues, is outdated in the context of digitalization and does not provide the creation of radically innovative solutions. The authors analyze the advantages of how the use of MSM contributes to the optimal choice of materials, technologies and components, as well as how it helps to achieve a balance between cost, quality and functionality of products. Special attention is paid to the possibilities of preliminary testing and adaptation of the product being developed in accordance with the changing requirements and preferences of consumers in order to increase competitive advantages. The results of the research are the concept of designing radically new products initiated either by the customer or by the manufacturer seeking to strengthen competitive positions; the concept of the technical and economic appearance of the product, formed on the basis of market analysis and including functional, component and economic models; the approach of using digital twins, allowing to optimize the product lifecycle through multivariate modeling, reducing costs and speeding up development; the key factors of the competitiveness of such a product have also been identified, which are determined by the integration of the image and the digital twin, taking into account global trends and customer requirements. The economic effects of using digital product models at different stages of the life cycle are described. A product competitiveness model is proposed that takes into account the level of digital maturity and the intensity of use of digital representations. A functional efficiency model is proposed that takes into account the effect of digital product modeling and its impact on economic efficiency. The study offers an economic and mathematical toolkit for calculating the competitiveness of radically new products through the integration of DTP and multivariate analysis, which expands the theory of innovation management in the digital economy.

Sobre autores

Vladimir Shiboldenkov

Bauman Moscow State Technical University

Autor responsável pela correspondência
Email: vshiboldenkov@bmstu.ru
ORCID ID: 0000-0001-6436-8662
Código SPIN: 9107-3319

PhD in Economics Associate Professor, Associate Professor of the Department of Business Informatics

5 2nd Baumanskaya st., bldg. 1, Moscow, 105005, Russian Federation

Sergey Nazyuta

RUDN University

Email: nazyuta_sv@pfur.ru
ORCID ID: 0000-0003-1921-8002
Código SPIN: 6817-2477

Candidate of Economics, the first vice-rector is the Vice-Rector for Economic Activity

6 Miklukho-Maklaya st., Moscow, 117918, Russian Federation

Alexander Chursin

RUDN University

Email: cursinaleksandr76@gmail.com
ORCID ID: 0000-0003-0697-5207
Código SPIN: 9123-8913

Doctor of Economics, Professor, Head of the Department of Applied Economics at the Higher School of Industrial Policy and Entrepreneurship

6 Miklukho-Maklaya st., Moscow, 117918, Russian Federation

Bibliografia

  1. Boginsky, A.I., Zelentsova, L.S., & Tikhonov, A.I. (2019). Intelligent monitoring as the basis for improving the competitiveness of high-tech production. In The International Scientific and Practical Forum “Industry. Science. Competence. Integration”. pp. 436–443. Cham: Springer International Publishing.
  2. Chubakova, V.D., & Drobkova, O.S. (2025). Regulatory requirements integration for the sustainable innovation classification. In 2025 7th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE). pp. 01–06. IEEE. https://doi.org/10.1109/REEPE63962.2025.10971063
  3. Chursin, A., Boginsky, A., Drogovoz, P., Shiboldenkov, V., & Chupina, Z. (2024). Development of a mechanism for assessing mutual structural relations for import substitution of high-tech transfer in life cycle management of fundamentally new products. Sustainability, 16(5), 1912. https://doi.org/10.3390/su16051912 EDN: FTUQAQ
  4. Chursin, A.A., Yudin, A.V., Filippov, P., & Grosheva, P. (2020). The fundamentals of the formation of the technical and economic appearance of radically new products in providing state support for its production. Economics and Management: Problems, Solutions, 12(4), 43–51. (In Russ.). https://doi.org/10.36871/ek.up.p.r.2020.12.04.007 EDN: KHOEHJ
  5. Dementiev, V.E. (2023). Technological sovereignty and production localization priorities. Terra Economicus, 21(1), 6–18. (In Russ.). https://doi.org/10.18522/2073-6606-2023-21-1-6-18 EDN: COKINW
  6. Drogovoz, P.A., Kashevarova, N.A., Kapran, N.P. (2021). Approach to valuation of aerospace technologies commercialization capability. In AIP Conference Proceedings (Vol. 2318, No. 1, p. 070003). AIP Publishing LLC.
  7. Drogovoz, P.A., Filobokova, L.Y., & Drobkova, O.S. (2021). An approach to the integration-balanced management of industrial complexes development in the space industry. In AIP Conference Proceedings (Vol. 2318, No. 1, p. 070008). AIP Publishing LLC.
  8. Drogovoz, P.A., & Drobkova, O.S. (2023). An approach to application of inter-sectoral models to manage the structure of scientific and production cooperation in the space industry. In AIP Conference Proceedings. Vol. 2549. No. 1. AIP Publishing. https://doi.org/10.1063/5.0107990
  9. Drogovoz, P.A., & Nevredinov, A.R. (2024). Application of Text Analysis and Ensemble Algorithms in Forecasting Companies Bankruptcy. In Ecological Footprint of the Modern Economy and the Ways to Reduce It: The Role of Leading Technologies and Responsible Innovations. pp. 117–121. Cham: Springer Nature Switzerland.
  10. Drogovoz, P.A., Gutenev, A.V., & Korenkova, D.A. (2023). A method for fuzzy combinatorial optimization of digital space-based services project portfolio. In AIP Conference Proceedings, 2549(1). AIP Publishing. https://doi.org/10.1063/5.0108627
  11. Drogovoz, P.A., Kashevarova, N.A., & Starikova, I.S. (2024). Development of blockchain platforms for tokenization of real assets. In Ecological Footprint of the Modern Economy and the Ways to Reduce It: The Role of Leading Technologies and Responsible Innovations. pp. 173–177. Cham: Springer Nature Switzerland.
  12. Drogovoz, P.A., Kashevarova, N.A., Dadonov, V.A., Sadovskaya, T.G., & Trusevich, M.K. (2021). Industry 4.0 in Russia: Digital transformation of economic sectors. In Industry 4.0 in SMEs Across the Globe. pp. 191–207. CRC Press.
  13. Drogovoz, P.A., Yudin, A.V., & Grosheva, P.Yu. (2021). An algorithm for decision-making to manage the innovative potential of organizations based on its assessment and forecasting. AIP Conference Proceedings, 2549(1): 210022. (In Russ.). https://doi.org/10.1063/5.0108344 EDN: LKOOPN
  14. Drogovoz, P.A., Yusufova, O.M., & Gutenev, A.V. (2022). An approach to the economic assessment of scientific and technical realizability of the aircraft and space systems development. In AIP Conference Proceedings, 2383(1). AIP Publishing. https://doi.org/10.1063/5.0074916 EDN: TKRNAH
  15. Fedorova, E., Drogovoz, P., Nevredinov, A., Kazinina, P., & Qitan, C. (2022). Impact of MD&A sentiment on corporate investment in developing economies: Chinese evidence. Asian Review of Accounting, 30(4), 513–539.
  16. Fedorova, E., Drogovoz, P., Popova, A., & Shiboldenkov, V. (2023). Impact of R&D, patents and innovations disclosure on market capitalization: Russian evidence. Kybernetes, 52(12), 6078–6106. https://doi.org/10.1108/k-08-2021-0760 EDN: UZCFQO
  17. Fedorova, E., Druchok, S., & Drogovoz, P. (2022). Impact of news sentiment and topics on IPO underpricing: US evidence. International Journal of Accounting & Information Management, 30(1), 73–94. https://doi.org/10.1108/IJAIM-06-2021-0117 EDN: GOOOBB
  18. Fedorova, E., Ledyaeva, S., Drogovoz, P., & Nevredinov, A. (2022). Economic policy uncertainty and bankruptcy filings. International Review of Financial Analysis, 82, 102174. https://doi.org/10.1016/j.irfa.2022.102174 EDN: HVHSQE
  19. Fedorova, E., Stepanov, I., Drogovoz, P., Rashchupkina, A., & Remesnik, A. (2021). Impact of the level of disclosure of corporate social responsibility on the share price: Quantitative and textual analysis. Economic Journal of the Higher School of Economics, 25(3), 423–451. https://doi.org/10.17323/1813-8691-2021-25-3-423-451 EDN: JSDNIH
  20. Gorlacheva, E.N., Omelchenko, I.N., Drogovoz, P.A., Yusufova, O.M., & Shiboldenkov, V.A. (2019). Cognitive factors of production’s utility assessment of knowledge-intensive organizations. In AIP Conference Proceedings, 2171(1). AIP Publishing. https://doi.org/10.1063/1.5133228 EDN: VKGEZK
  21. Ivanyugin, M.A. (2020). Innovation management as the competitiveness of entrepreneurship. International Journal of Humanities and Natural Sciences, (4–2), 85–89. (In Russ.). https://doi.org/10.24411/2500-1000-2020-10351 EDN: RMOJEZ
  22. Kashevarova, N.A. (2024). Analysis of the methods of intellectual property management in innovation ecosystems. In Ecological Footprint of the Modern Economy and the Ways to Reduce It: The Role of Leading Technologies and Responsible Innovations. pp. 221–226. Cham: Springer Nature Switzerland.
  23. Kashevarova, N.A., & Akulshin, N. (2023). Prospects in developing the public-private partnership in space industry. In AIP Conference Proceedings, 2549(1). AIP Publishing. https://doi.org/10.1063/5.0108955
  24. Kashevarova, N.A., & Ivanov, N.A. (2023). Prospects of digital transformation in the Russian space industry. In AIP Conference Proceedings, 2549(1). AIP Publishing. https://doi.org/10.1063/5.0108957
  25. Kashevarova, N.A., & Panova, D.A. (2023). Space industry of the People’s Republic of China: Ecosystem transformation. In AIP Conference Proceedings, 2549(1). AIP Publishing. https://doi.org/10.1063/5.0108953
  26. Maslennikova, Y., & Brom, A. (2021). Methodology of quantitative and qualitative evaluation of an industrial enterprise digital potential on the example of evaluation of the “Personnel resources” component. In IOP Conference Series: Earth and Environmental Science (Vol. 666, No. 6, p. 062100). IOP Publishing.
  27. Mikhnenko, P.A. (2018). Los modelos matemáticos del desarrollo organizacional y los cambios organizacionales. Revista de Métodos Cuantitativos para la Economía y la Empresa, 25, 42–53. https://doi.org/10.46661/revmetodoscuanteconempresa.2378 EDN: SAYHKR
  28. Mikhnenko, P.A. (2020). Mathematical model and method of complex organizational diagnostic. Serbian Journal of Management, 15(1), 19–31. https://doi.org/10.5937/SJM15-18513 EDN: GYDZSG
  29. Nevredinov, A.R., & Yusufova, O.M. (2020). The use of machine learning in digital counterparts of production processes. In The Future of Russian Engineering. pp. 364–368. (In Russ.). EDN: RYAFMZ
  30. Nisha, S., & Jonathan, K. (2020). The latest information support practices for strategies to increase competitiveness. Foresight, 14(3), 30–39. (In Russ.). https://doi.org/10.17323/2500-2597.2020.3.30.39 EDN: SZHPHM
  31. Omelchenko, I., Drogovoz, P., Gorlacheva, E., Shiboldenkov, V., & Yusufova, O. (2019). The modeling of the efficiency in the new generation manufacturing-distributive systems based on the cognitive production factors. In IOP Conference Series: Materials Science and Engineering, 630(1), 012020. IOP Publishing. https://doi.org/10.1088/1757-899X/630/1/012020 EDN: XVKTAQ
  32. Preobrazhenskaya, V.V., & Gorlacheva, E.N. (2019). Cognitive production factors in the digital economy. In The International Scientific and Practical Forum “Industry. Science. Competence. Integration” (pp. 193–200). https://doi.org/10.1007/978-3-030-40749-0_23 EDN: OTHHKC
  33. Sadovskaya, T.G., Drogovoz, P.A., Dadonov, V.A., & Melnikov, V.I. (2009). The application of mathematical methods and models in the management of organizational and economic factors of competitiveness of an industrial enterprise. Audit and Financial Analysis, (3), 364–379. (In Russ.). EDN: KVEVHV
  34. Sadovsky, G.L., & Drogovoz, P.A. (2019). The open innovation model as a tool for increasing the competitiveness of a machine-building enterprise. In The Future of Russian Engineering. pp. 1002–1005. (In Russ.). EDN: WOLTKR
  35. Samoldin, A.N. (2023). Game theory approach in marketing management of science intensive enterprises. In AIP Conference Proceedings, 2549(1). AIP Publishing. https://doi.org/10.1063/5.0108787
  36. Samoldin, A.N., & Lagunova, M.S. (2022). Transformation of the environmental management system model in the context of digitalization of production. In AIP Conference Proceedings, 2383(1). AIP Publishing. https://doi.org/10.1063/5.0074836 EDN: JVQUIT
  37. Samoldin, A.N., & Serebryanaya, V.S. (2023). Customer relationship management in the knowledge-intensive enterprises. In AIP Conference Proceedings, 2549(1). AIP Publishing. https://doi.org/10.1063/5.0108788
  38. Susov, R.V., & Samoldin, A.N. (2023a). Transformation of business processes of science-intensive manufacturing based on digital models. In AIP Conference Proceedings, 2549(1). AIP Publishing. https://doi.org/10.1063/5.0108895
  39. Susov, R.V., & Samoldin, A.N. (2023b). Transformation of high-tech manufacturing business processes based on digital models. In AIP Conference Proceedings, 2549(1). AIP Publishing. https://doi.org/10.1063/5.0108896
  40. Tyulin, A.E., Chursin, A.A., Ragulina, J.V., Akberdina, V.V., & Yudin, A.V. (2023). The development of Kondratieff’s theory of long waves: the place of the AI economy humanization in the ‘competencies-innovations-markets’ model. Humanities and Social Sciences Communications, 10(1), 1–13. https://doi.org/10.1057/s41599-022-01434-8 EDN: UUIGGO
  41. Tyurchev, K.S. (2021). Management of innovation systems: from national to local level. Issues of State and Municipal Management, (4), 185–206. (In Russ.). https://doi.org/10.17323/1999-5431-2021-0-4-185-206 EDN: MGBAWL
  42. Viktorovich, J.A., Anatolevich, D.P., Jurevna, G.P., & Mihajlovich, S.A. (2021). Method for evaluating the resource maintenance for the development of remote sensing services. In AIP Conference Proceedings, 2318(1), AIP Publishing. https://doi.org/10.1063/5.0035794
  43. Yudin, A.V., Drogovoz, P.A., Grosheva, P.J., & Solovev, A.M. (2021). Method for evaluating the resource maintenance for the development of remote sensing services. In AIP Conference Proceedings (Vol. 2318, No. 1, p. 070015). AIP Publishing LLC
  44. Zhdaneev, O.V., & Vlasova, I.M. (2023). Challenges and priorities of the digital transformation of the coal industry. Coal, (1), 62–69. (In Russ.). https://doi.org/10.18796/0041-5790-2023-1-62-69 EDN: EIXIHN

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».