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Abstract

The paper examines seasonal variability in the spatial distribution and magnitude of hori-
zontal gradients of temperature, salinity and density in large-scale surface frontal zones
in the North Atlantic Ocean. Monthly average temperature and salinity data at the 0.5 m
horizon from the ORASS5 oceanic reanalysis (1958-2021) are used. High gradients of tem-
perature exceeding 2 °C/100 km, those of salinity exceeding 1 PSU/100 km, and those of
density exceeding 1 kg-m=/100 km were observed in the subpolar and temperate regions in
fronts along large-scale currents carrying warm salty waters from the southern latitudes
(Gulf Stream, North Atlantic Current) and cold waters with low salinity from the Arctic
regions (Labrador Current, East Greenland Current). These fronts occur throughout the year.
High salinity and density gradients are also observed in the tropical summer in the front
at the edge of the Amazon River plume, resulting from seasonal river flow. In these five
frontal zones, areas were identified for which quantitative estimates of seasonal variability
of gradients are provided. In the subpolar and temperate latitudes, maximum temperature
gradients are observed in winter. Warming up of water in the summer season is accompa-
nied by a decrease in gradients. The greatest range of seasonal variability of temperature
gradients was noted in the frontal zones of the Gulf Stream and the East Greenland Current.
In summer, in the fronts of subpolar regions, salinity gradients increase due to the melt-
ing of Arctic and continental ice and an increase in the influx of waters with low salinity.
In the frontal zone of the East Greenland Current, as well as at the boundary of the Amazon
River plume, the highest range of seasonal changes in salinity and density gradients was
noted. In these areas, the contribution of salinity to seasonal changes in density at the ocean
surface increases.
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AHHOTAIUSA

PaccmaTpuBaeTcst ce30HHAs H3MEHUYHUBOCTh IIPOCTPAHCTBEHHOI'O paclpeIesIeHHs U BeJINYH-
HBI TOPU30HTAJBHBIX T'PAJUEHTOB TEMIEpPaTypbl, COJEHOCTH U IJIOTHOCTH B KPYyIHOMAC-
mTaOHBIX MOBEPXHOCTHBIX (PPOHTAIBHBIX 30HAX B CEBEPHOW YacTH ATIaHTHYECKOTO OKea-
Ha. Mcronp3yroTes cpeHeMecayHble JaHHBIE O TeMIepaType M COJICHOCTH Ha TOPH3OHTE
0.5 M oxeannueckoro peaHanuza ORASS (1958-2021 rr.). [TonyueHo, 4To BEICOKHE Tpasu-
eHTHI TeMIiepatypsl, npessimaromue 2 °C/100 kM, comernoctn — 1 EIIC/100 kM, mioTHO-
cti— 1 kr'M>/100 KM, HaGMIONAIOTCA B CYOIOJPHONM M YMEPEHHOW 30HAX BO (POHTAX
BIOJIb KPYITHOMACIITAOHBIX TEUCHHUH, MEPEHOCAIINX TEIUIbIE COJEHBIE BOABI M3 FOJKHBIX
mmpot (I'onbperpum, CeBepo-ATIaHTHYECKOE TEUEHHE) M XOJIOIHBIE BOJIBI C HU3KOH CO-
JICHOCTBIO M3 apKTH4eckux paiioHoB (JIabpamopckoe Teuenme, Bocrouno-I'penmanackoe
TeueHne). DTH (POHTHI BBIACIAIOTCS B TEUYCHNE BCETO roja. BrICOKMe rpagueHThl COIeHO-
CTH ¥ IUIOTHOCTH TaK)X€ OTMEYAIOTCS JIETOM B TPONUYECKOW 30HE BO (ppoHTE HA TpaHUIle
oMa AMa30HKHM, BO3HHKAIOIIETO B PE3yJIbTaTe CE30HHOIO CTOKa PEeKH. B ykazaHHBIX
mTH (POHTANIBHBIX 30HAaX OBUIM BBIJEJICHBI 00JACTH, JJISi KOTOPBIX MPUBOJATCS KOJIMYe-
CTBEHHBIE OIIEHKHM CE30HHOM HM3MEHYHMBOCTU TPajueHTOB. B cyOmossipHOl M yMepeHHOi
30HaX MAaKCHMAaJbHbIE TPaJMEHTHl TEMIepaTypbl OTMeYaloTCs B 3UMHee BpeMs. [Iporpes
BOJIBI B JIGTHUH CE30H COMPOBOXAACTCS yMEHBIIEHHEM IpaaneHToB. Hanbonpmmii pazmax
CE30HHOM M3MEHYMBOCTH I'PaJIMCHTOB TEMIIEPATYpPhl HAOII0AaeTCsl BO (PPOHTAIBHBIX 30HAX
Tonedecrpuma 1 Bocrouno-I'pennannckoro tedenus. Jletom Bo (poHTax CyOmONSIPHBIX
pailoHOB MPOUCXOAUT MOBBIIIEHUE IPAJUEHTOB COJIEHOCTU BCIEICTBUE TasHUS apKTH-
YECKUX U MAaTEPUKOBBIX JIbJOB U YBEJIMYEHUS MOCTYIIEHHUS BOJ C MOHMXKEHHOI cone-
HOCTBIO. Bo ¢poHTanbHON 30He BocTouHO-I'peHIaHACKOro TeUeHNs, a Tak)Ke Ha TpaHuIle
IUIIOMa peKr AMa30HKH OTMedaeTcsi HanboJiee BBICOKMI pa3Max CEe30HHBIX W3MEHEHHMH
TpaJIueHTOB COJICHOCTH U IUIOTHOCTH. B 3TuX pailioHax Bo3pacTaeT BKJaJ COJECHOCTH B Ce-
30HHBIE H3MEHEHHS IIJIOTHOCTH HA MOBEPXHOCTH OKEaHa.

KiroueBsble ci10Ba: GpOHTANTBHBIC 30HBI, TOPU30HTAIBHEIC TPATUCHTHI, TPAIHCHT TeMIIepa-
TYpBI, TPAJUEHT COJICHOCTH, TPAJUCHT IUIOTHOCTH, CE30HHAS M3MEHYMBOCTH, ATIAHTHYE-
CKHI OKEaH

BaarogapHocTH: paboTa BRIIIOJHEHA B paMKax rocyaapctBeHHoro 3amxanus GIT'BYH OUL]L
MI'U no teme Ne FNNN-2024-0014 «®yHaaMeHTaIbHBIE UCCIIEAOBAHMS MPOIIECCOB B3au-
MOJICUCTBHSI B CHUCTEME OKeaH-atMocdepa, (HOPMUPYIOIIMX HU3MEHYHBOCTh (PHU3HMYECKOTO
COCTOSAHHUA MOpCKOI7I Cp€abl Ha pas3jIMYHbIX MMPOCTPAHCTBECHHO-BPEMCHHBIX MacIiTabax».
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Introduction

Frontal zones are areas in the ocean where water masses with different physi-
cal, chemical and biological properties are encountered as a result of water transport
by currents, river flow, upwellings and other dynamic processes [1, 2]. Boundaries
between water masses are characterized by high horizontal gradients of tempera-
ture, salinity, density and other characteristics which makes it possible to determine
the position of fronts [1]. Frontal zones are areas of high biodiversity, while oceanic
frontal interface separate zones with different habitat conditions for marine organ-
isms, that is why the analysis of changes in frontal characteristics is important
for marine biology [2—4]. The greatest number of studies of surface frontal
zones are currently being conducted in this field. What is more, long-term chang-
es in the characteristics of frontal zones can serve as indicators of climate change
in the ocean, which manifests itself differently in different seasons, which deter-
mines the importance of studying them [1, 5, 6].

The study of processes in frontal zones began in the mid-20th century [1, 7],
but the emergence of satellite data, drifting buoy data and creation of modern ocean
reanalyses at the end of the century expanded the possibilities for studying fronts
in the ocean [8]. These data made it possible to study fronts on various time and
spatial scales [1, 6, 9].

Currently, the characteristics of frontal zones are analyzed based on satellite
data on ocean surface temperature [10—12], salinity [13, 14], sea level [15, 16].
Modern ocean reanalyses with high spatial resolution make it possible to consider
spatiotemporal changes in temperature and salinity frontal zones comprehensively.

The features of the seasonal course of the North Atlantic Ocean have been
studied most closely for temperature frontal zones [17-22]. Therefore, it is of
interest to consider the seasonal variability of the characteristics of frontal zones
in the salinity and density fields. This paper examines the seasonal variability
of climatic frontal zones associated with large-scale movements in the ocean.
The position of the fronts is determined based on calculations of horizontal gradi-
ents of temperature, salinity and density.

The work aims at a comprehensive study of seasonal variability of horizontal
gradients in the fields of temperature, salinity and density in large-scale frontal
zones in the North Atlantic Ocean.

Research data and methods

Monthly average data from the ORASS ocean reanalysis for 1958-2021 on po-
tential temperature 0 (°C) and salinity S (PSU) at a depth of 0.5 m on a grid with
a spatial resolution of about 0.25° (up to 9 km in polar regions) were used in this
paper [23]. The potential density anomaly was calculated based on salinity and po-
tential temperature values according to the algorithms of the international equation
of seawater (TEOS-10) V.

D UNESCO, 2010. The International Thermodynamic Equation of Seawater — 2010: Calculation and
Use of Thermodynamic Properties. UNESCO, 196 p.
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To determine the position and characteristics of frontal zones, horizontal gra-
dients of potential temperature VO (°C/100 km), salinity V.S (PSU/100 km) and
potential density anomaly V cg (kg-m /100 km) were calculated for each month of

all the years:
op O oY (60)
Vo=|—,—|, |V(p|: (_(pj + o9 ,
Ox Oy ox 0

where ¢ is potential temperature 0, salinity S or potential density anomaly Ge.
The gradient vector components were calculated using the method of central finite
differences. When calculating, the local latitude was taken into account.

Spatial distribution of thermohaline fields and their gradients is presented for
winter (December—February) and summer (June—August). Quantitative evaluation
of seasonal variability of temperature, salinity and density gradients was performed
for frontal zones with the gradients of temperature exceeding 2 °C/100 km, salinity —
1 PSU/100 km, density — 1 kg-m>/100 km. The calculations were carried out
for five separate areas identified in frontal zones along large-scale currents and
at the edge of the Amazon River plume. Area / was identified in the frontal zone of
the Gulf Stream (41.5°—43° N, 58°-64° W); area 2 — of the North Atlantic Current
(49°-53° N, 28°—42° W); area 3 — of the Labrador Current (59°—63° N, 60°—61° W);
area 4 — of the East Greenland Coastal Current (65.5°—67° N, 29°-35° W); and
area 5 — of the Amazon River plume (8°-11° N, 48°-52° W) (Fig. 1, d). Thermoha-
line characteristics were averaged within the area edges.

An analysis of the seasonal variability of the frontal zone position and size was
carried out for areas /, 3 and 4. Meridional sections were identified along 61° and
34° W, respectively, in the zonally oriented areas of the frontal zones of the Gulf
Stream and the East Greenland Current. A zonal section along 59° N was identified
on the meridionally oriented section of the Labrador Current frontal zone (Fig. 1, d).
In this case, the gradient values were pre-averaged with a step of 0.25° along
the section in areas with a finer grid.

Results and discussion

Temperature frontal zones

Waters with different thermohaline characteristics enter the North Atlantic
with ocean currents, which determines the presence of oceanic fronts at their
boundaries [1]. The temperature frontal zones are observed on the ocean surface in
the vicinity of all such large-scale currents as the Gulf Stream, Labrador, West
Greenland, East Greenland, Norwegian Currents, as well as in the area of coastal
upwelling off the western coast of Africa and in summer in the eastern part of the
equatorial region due to equatorial upwelling (Fig. 1).
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Fig. 1. Spatial distribution of potential temperature 6 (a, c) and its horizontal
gradients VO (b, d) at a depth of 0.5 m in winter (a, b) and summer (c, d);
seasonal variability of mean values 6 (e) and VO (f) in areas /5. Frontal zones:
GSF — Gulf Stream, NACF — North Atlantic Current, LCF — Labrador Current,
EGCF — East Greenland Current, AmPF — Amazon River plume, PF — East Green-
land Polar Front, AF — Arctic Front
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The temperature frontal zone along the Gulf Stream is observed throughout
the year. It separates the warm waters carried by the Gulf Stream from the southern
latitudes and the cold waters of the Labrador Current off the Nova Scotia coast
(Fig. 1, a — d) [24, 25]. Temperature gradients reach 13 °C/100 km in this frontal
zone. Mean temperature gradients in area 1 in winter are 4 °C/100 km with their
maxima up to 6.5°C/100 km. (Fig. 1, b, f; Table). By summer, this front weakens
due to the seasonal increase in water temperature in the surrounding waters and the
gradients decrease, but remain quite high exceeding 2 °C/100 km (Fig. 1, ¢, d, f;
Table).

Statistical characteristics of frontal zone gradients in areas /-5

Value Area/ | Area2 | Area3 | Aread | Areal
Ve, °c/100 km
Mean 3.8 1.0 1.5 3.7 0.16
Maximum 5.0 1.2 2.0 43 0.2
Minimum 2.4 0.9 1.1 2.7 0.09
Range 2.6 0.3 0.9 1.6 0.11

Vs, PSU/100 km

Mean 1.8 0.22 1.0 1.3 0.8
Maximum 2.0 0.24 1.6 2.3 1.7
Minimum 1.6 0.19 0.7 0.9 0.2
Range 0.4 0.05 0.9 1.4 1.5

Voo, kgm=3/100 km

Mean 0.8 0.15 0.8 0.8 0.6
Maximum 1.0 0.22 1.1 1.6 1.3
Minimum 0.7 0.1 0.5 0.5 0.2
Range 0.3 0.12 0.6 1.1 1.1
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The mean gradients do not exceed 1 °C/100 km in area 2 of the North Atlantic
Current frontal zone. They increase in winter and decrease in summer. Low gradi-
ent values can be associated with the branching of the current and the seasonal
displacement of branches [18].

The Labrador and East Greenland Currents transport cold waters into the North
Atlantic from the Arctic Ocean. The frontal zones of the Labrador and East Green-
land Coastal Currents are present in all seasons. The winter decrease in temperature
lasts until April in these areas, with temperatures increasing towards summer,
with its maximum in August (Fig. 1, e). Maximum gradients in areas 3 and 4 are
observed in December and January, then they decrease from winter to summer
(Fig. 1, f; Table). The local minimum in April corresponds to the minimum water
temperature in the seasonal cycle. The local maximum in June is observed at the be-
ginning of the summer warming, when the difference between the water tempera-
ture in the coastal and sea areas is still large.

Summer ice edge retreat in the Atlantic sector of the Arctic leads to the East
Greenland Polar Temperature Front strengthening [26]. Here, the maximum gradi-
ents reach 4 °C/100 km in summer. The Arctic Front (Jan Mayen — Mohns Ridge
[27]) extending from Iceland to Svalbard intensifies in winter and weakens in sum-
mer. Maximum temperature gradients are observed in the frontal area in winter and
spring reaching 3 °C/100 km (Fig. 1, b, d). In summer, gradients decrease and do
not exceed 2 °C/100 km.

Along the African coast, the upwelling frontal zone is present south of 20° N
in winter and spring and north of 20° N in summer and autumn, which is associated
with seasonal changes in the wind regime [21]. Gradients in the equatorial
upwelling frontal zone increase in summer and autumn (Fig. 1, b, d).

The obtained position of large-scale temperature frontal zones and seasonal
variability of gradients are in good agreement with the results of previous studies
conducted using different types of data: satellite data on the surface temperature of
the entire World Ocean [2, 19], the North Atlantic subtropical zone [28], the Gulf
Stream front [6, 20], in situ measurement hydrological data [17, 27] and satellite
altimetry data for the North Atlantic [22].

Salinity frontal zones

The salinity frontal zones with gradients exceeding 1 PSU/100 km are lo-
cated in the areas of the Gulf Stream, Labradorand East Greenland Currents, as
well as of the Polar Front and at the edge of the Amazon River plume (Fig. 2).

In the Gulf Stream frontal zone, the maximum salinity gradients are
found in the area of the Gulf Stream North Wall throughout the year [29]
(Fig. 2, b, d). Their values reach 5 PSU/100 km in winter and 4 PSU/100 km
in summer. In area /, maximum salinity is observed in spring [30] and gradi-
ents are minimum at this time (Fig. 2, e, f). High salinity gradients are ob-
served in autumn and winter, when seasonal intensification of transport of
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the Labrador Current and its branch spreading along the Nova Scotia coast occur [24,
31, 32]. The influence of fresh water flow from the Gulf of St. Lawrence and the
salinity of the Gulf Stream water are also important [33].

Despite the fact that the Labrador Current intensifies in autumn and winter
[31], and the East Greenland Current — in winter and spring [34], the gradients
in the frontal zones of these currents (areas 3 and 4) increase in summer, which is
associated with the seasonal melting of the Arctic ice and removal of freshened
water from the Arctic Ocean, as well as with the melting of coastal and continental
ice. Minimum gradients are observed in March and April at minimum temperature,
after which gradient values increase and reach their maximum at the beginning
of summer (Fig. 2, f; Table).

In the Atlantic sector of the Arctic, the East Greenland Polar Salinity Front is
significantly strengthened in summer. This is also stipulated by the Arctic ice
melting and influx of freshened waters, the salinity of which is significantly
lower than that of the subpolar regions [26]. The maximum values of horizontal
salinity gradients in summer are 3.5 PSU/100 km.

In the tropical Atlantic Ocean, an extensive salinity frontal zone is located
at the edge of the Amazon River plume [35]. Freshened waters are distributed
by the North Brazil Current to the north to 15° N in spring and summer. Salinity
decreases in area 5 from March (36 PSU) to August (32 PSU) and gradients in-
crease from 0.2 to 1.7 PSU/100 km.

Density frontal zones

The density frontal zones with gradients exceeding 1 kg-m /100 km are located
in the areas of the Gulf Stream, Labrador, East Greenland Currents (Fig. 3, b, d).
In summer, a large estuarine frontal zone is observed in the Amazon River plume
area (Fig. 3, ¢, d). In summer, a frontal zone associated with equatorial upwelling
also occurs along the equator.

The density in areas /—4 decreases in summer, while the density gradients
increase at this time (Fig. 3, e, f). Gradients exceeding 4 kg-m~/100 km are observed
locally in certain areas of the frontal zones of the Labrador Current in the Davis
Strait, the East Greenland Coastal Current, the Polar Front and in the Amazon
estuarine zone (Fig. 3, b, d).

Minimum density gradients in areas /—4 of the North Atlantic frontal zones are
observed in March. The minimum density gradient in the frontal zone of the Ama-
zon River plume (area 5) is observed in February.

In areas / (the Gulf Stream frontal zone) and 2 (the North Atlantic Current
frontal zone), the minimum and maximum density in the seasonal cycle are ob-
served at the maximum and minimum temperatures, respectively (Fig. 4, a, b).
Here (in the open ocean), the contribution of temperature exceeds the contribution
of salinity to seasonal density changes.
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In areas where less saline waters flow from the Arctic Ocean (the Labrador
and East Greenland Currents) and in the area of the Amazon River flow, the con-
tribution of salinity to seasonal density changes increases. This is clearly illustrated
by density changes in the frontal zone of the East Greenland Coastal Current
(area 4). Here, the lowest density is achieved in June with the lowest salinity, rather
than with the maximum temperature, which is observed in August (Fig. 4, b).
The maximum density is observed in November and December with high salinity.
The minimum temperature in this area is observed in April. In the frontal zone of
the Labrador Current (area 3), the maximum density is observed in February and
March, while the minimum temperature is in April.

In area 5 of the Amazon River plume frontal zone, the maximum temperature is
observed in September [36], while the minimum density is obtained for August,
when the salinity is minimum (Fig. 4, ¢).

Seasonal variability of the size of frontal zones

Seasonal temperature and salinity changes in currents and surrounding waters,
as well as changes in river flow, can lead to shifts in the edges or changes in the size
of the frontal zone. Thus, the salinity and density frontal zones of the Amazon River
plume (Figs. 2, 3) are observed only during the increase in seasonal flow in spring
and summer, not in the winter months.

The seasonal variability of the position and magnitude of gradients along
the meridional section crossing the Gulf Stream frontal zone at 61° W (area 1) is
well expressed. Here, the front with temperature gradients exceeding 2 °C/100 km
narrows in August and September with the decrease of gradients (Fig. 5, a).
The zone of high salinity gradients (more than 2 PSU/100 km) shifts southward
from winter to summer and back northward in autumn (Fig. 5, ). The zone of high
density gradients shifts in a similar manner (Fig.5, ¢). It should be noted that
the change in the width of frontal zones obtained from average long-term data
for individual seasons can be associated with the shifts of these zones in separate
years.
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In area 4 of the East Greenland Coastal Current frontal zone, the meridional sec-
tion along 34° W was chosen. The meridional size of the temperature frontal zone
expands southward in July and August and northward in October and December
(Fig. 5, d). The width of the salinity and density frontal zones increases in summer
due to the increase of gradients at the northern edge (Fig. 5, ¢, f).

In the meridional section of the Labrador Current frontal zone (area 3),
the zonal section along 59° N was considered. In this area, the zone of high gra-
dients (more than 2 °C/100 km) shifts eastward from January to April. In May,
the gradients decrease and the zone shifts westward (Fig. 5, g). The gradients
in the salinity (Fig. 5, f) and density (Fig. 5, i) frontal zones increase in summer and
early autumn. At the same time, the zones shift westward.

Conclusion

This paper gives a comprehensive understanding of the position of large-
scale surface thermal, salinity and density frontal zones in the North Atlantic
Ocean and seasonal variability of their gradients based on the use of ORASS
ocean reanalysis data on temperature and salinity at the 0.5 m horizon. Quanti-
tative evaluation of seasonal variability of gradients in frontal zones in individual
areas of large-scale currents and at the edge of the Amazon River plume is provided.

The analysis of seasonal variability of spatial distribution and magnitudes of
horizontal gradients in thermohaline frontal zones showed the following. Frontal
zones on the ocean surface located along such large-scale currents as the Gulf
Stream, North Atlantic, Labrador and East Greenland Currents, which carry waters
differing in temperature and salinity from the surrounding waters, are observed
throughout the year. Temperature gradients in these zones decrease from winter to
summer due to seasonal warming of the waters. The maximum range of seasonal
changes in temperature gradients is observed in the regions of the Gulf Stream and
the East Greenland Current.

Significant seasonal variability of salinity and density gradients is observed
in the frontal zones of the Labrador and East Greenland Currents. Minimum gra-
dients are observed in late winter and early spring at minimum temperatures.
Gradients increase in summer due to the melting of coastal, continental and Arctic
ice.

In the Tropical Atlantic, high intra-annual variability of salinity and density
gradients is observed in the Amazon River frontal zone. Here, maximum gradients
are observed in summer at the edge of the plume that occurs due to the seasonal
increase in river flow. No frontal zone is observed in winter.

The obtained magnitudes of seasonal changes in gradients in frontal zones can
be used when studying the biological productivity of marine waters. They can also
be taken into account in climate studies since as a rule, the amplitude of the sea-
sonal cycle of the ocean surface layer characteristics exceeds interannual changes.
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