Использование машинного обучения для классификации стратиграфических слоев снежной толщи по данным устройства snow micro pen
- Авторы: Фролов Д.М.1, Селиверстов Ю.Г.2, Кошурников А.В.2, Гагарин В.Е.1, Николаева Е.С.2
-
Учреждения:
- Московский государственный университет имени М.В. Ломоносова
- Московский Государственный университет имени М.В. Ломоносова
- Выпуск: № 1 (2024)
- Страницы: 1-11
- Раздел: Статьи
- URL: https://journal-vniispk.ru/2453-8922/article/view/365634
- EDN: https://elibrary.ru/GDSACR
- ID: 365634
Цитировать
Полный текст
Аннотация
Об авторах
Денис Максимович Фролов
Московский государственный университет имени М.В. Ломоносова
Email: denisfrolovm@mail.ru
научный сотрудник;
Юрий Германович Селиверстов
Московский Государственный университет имени М.В. Ломоносова
Email: yus5@yandex.ru
научный сотрудник Географический факультет;
Андрей Викторович Кошурников
Московский Государственный университет имени М.В. Ломоносова
Email: koshurnikov@msu-geophysics.ru
научный сотрудник Географический факультет кафедра криолитологии и гляциологии;
Владимир Евгеньевич Гагарин
Московский государственный университет имени М.В. Ломоносова
Email: gagar88@yandex.ru
научный сотрудник кафедры геокриологии;
Елизавета Сергеевна Николаева
Московский Государственный университет имени М.В. Ломоносова
Email: nikolaeva_lizaveta@mail.ru
студент; кафедра криолитологии и гляциологии географического факультета;
Список литературы
Frolov D.M., Seliverstov Y.G., Sokratov S.A., Koshurnikov A.V., Gagarin V.E., Nikolaeva E.S. Investigation of the Spatio-Temporal Heterogeneity of Snow Thickness at the Meteorological Site of the Lomonosov MSU in the Winter of 2022/2023 // Arctic and Antarctic. – 2023. – № 1. – P. 1-13. doi: 10.7256/2453-8922.2023.1.40448.2 EDN: PGRHXP URL: https://en.nbpublish.com/library_read_article.php?id=40448 D.M. Frolov, G.A. Rzhanitsyn, S.A. Sokratov, et. al., Monitoring of seasonal variations in ground temperature at the observation site of Lomonosov MSU // E3S Web of Conferences 371, 03004 (2023). doi: 10.1051/e3sconf/202337103004 Proksch M., Rutter N., Fierz Ch., Schneebeli M. Intercomparison of snow density measurements: bias, precision, and vertical resolution // The Cryosphere. 2016, 10(1), 371–384. https://doi.org/10.5194/tc-10-371-2016 Sturm M., Holmgren J., Liston G.L. A seasonal snow cover classification system for local to global applications // Journ. of Climate. 1995, 8 (5 (Part 2)): 1261–1283. https://doi.org/10.1175/1520-0442(1995)0082.0.CO;2 Fierz Ch., Armstrong R.L., Durand Y., Etchevers P., Greene E., McClung D.M., Nishimura K., Satyawali P.K., Sokratov S.A. The international classification for seasonal snow on the ground (UNESCO, IHP (International Hydrological Programme) // VII, Technical Documents in Hydrology, No 83; IACS (International Association of Cryospheric Sciences), 2009. Colbeck, S.: A review of the metamorphism and classification of seasonal snow cover crystals, IAHS Publication. 1987, 162, 3–24. Ménard, C. B., Essery, R., Barr, A., Bartlett, P., Derry, J., Dumont, M., Fierz, C., Kim, H., Kontu, A., Lejeune, Y., et al.: Meteorological and evaluation datasets for snow modelling at 10 reference sites: description of in situ and bias-corrected reanalysis data, Earth System Science Data. 2019. 11, 865–880. King, J., Howell, S., Brady, M., Toose, P., Derksen, C., Haas, C., and Beckers, J.: Local-scale variability of snow density on Arctic sea ice // The Cryosphere. 2020. 14, 4323–4339. Kaltenborn, J., Macfarlane, A. R., Clay, V., and Schneebeli. Pre-trained Models for SMP Classification and Segmentation. 2022. https://doi.org/10.5281/zenodo.7063521. Kaltenborn, J., Macfarlane, A. R., Clay, V., and Schneebeli. Automatic snow type classification of snow micropenetrometer profiles with machine learning algorithms // Geosci. Model Dev., 2023.16, 4521–4550, https://doi.org/10.5194/gmd-16-4521-2023. Nguyen, N. and Guo, Y.: Comparisons of sequence labeling algorithms and extensions. // Proceedings of the 24th international conference on Machine learning, 2007. P. 681–688. Lemaître, G., Nogueira, F., and Aridas, C. K. Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning // The Journal of Machine Learning Research. 2017. 18, 559–563. 2017. Schneebeli, M. and Johnson, J. B.: A constant-speed penetrometer for high-resolution snow stratigraphy // Annals of Glaciology. 1998. 26, 107–111. Löwe, H. and Van Herwijnen, A.: A Poisson shot noise model for micro-penetration of snow // Cold Regions Science and Technology. 2012. 70, 62–70. Johnson, J. B. and Schneebeli, M. Snow strength penetrometer. US Patent 5. 1998. 831, 161.
Дополнительные файлы
