From visual diagnostics to deep learning: automatic mineral identification in polished section images
- Authors: Korshunov D.M.1, Khvostikov A.V.2, Nikolaev G.V.2, Sorokin D.V.2, Indychko O.I.2, Boguslavskii M.A.2, Krylov A.S.2
-
Affiliations:
- Geological Institute of the Russian Academy of Sciences (GIN RAS)
- Lomonosov Moscow State University
- Issue: Vol 10, No 3 (2025)
- Pages: 232-244
- Section: GEOLOGY OF MINERAL DEPOSITS
- URL: https://journal-vniispk.ru/2500-0632/article/view/350750
- DOI: https://doi.org/10.17073/2500-0632-2025-05-416
- ID: 350750
Cite item
Full Text
Abstract
About the authors
D. M. Korshunov
Geological Institute of the Russian Academy of Sciences (GIN RAS)
Email: dmit0korsh@gmail.com
ORCID iD: 0000-0002-8500-7193
SPIN-code: 3118-6460
A. V. Khvostikov
Lomonosov Moscow State University
Email: khvostikov@cs.msu.ru
ORCID iD: 0000-0002-4217-7141
SPIN-code: 1972-4606
G. V. Nikolaev
Lomonosov Moscow State University
Email: nickolaev.gleb03@gmail.com
ORCID iD: 0009-0003-0814-3997
D. V. Sorokin
Lomonosov Moscow State University
Email: dsorokin@cs.msu.ru
ORCID iD: 0000-0003-3299-2545
SPIN-code: 4390-8842
O. I. Indychko
Lomonosov Moscow State University
Email: olesyaindychko@gmail.com
ORCID iD: 0009-0007-0936-4088
M. A. Boguslavskii
Lomonosov Moscow State University
Email: mboguslavskiy@yandex.ru
ORCID iD: 0000-0003-0133-7185
SPIN-code: 2474-1564
A. S. Krylov
Lomonosov Moscow State University
Email: kryl@cs.msu.ru
ORCID iD: 0000-0001-9910-4501
SPIN-code: 4218-6894
References
De Castro B., Benzaazoua M., Chopard A., et al. Automated mineralogical characterization using optical microscopy: Review and recommendations. Minerals Engineering. 2022;189:107896. https://doi.org/10.1016/j.mineng.2022.107896 Duncan P., Gavyn K. R. Unlocking the applications of automated mineral analysis. Geology Today. 2011;27(6):226–235. https://doi.org/10.1111/j.1365-2451.2011.00818.x Юшко С. А. Методы лабораторных исследований руд. М.: Недра; 1984. 389 с. Craig J. R., Vaughan D. J. Ore microscopy and ore petrography. Manchester: A Wiley-interscience Publication; 1994. 446 p. Bonifazi G. Digital multispectral techniques and automated image analysis procedures for industrial ore modelling. Minerals Engineering. 1995;8(7):779–794. https://doi.org/10.1016/0892-6875(95)00039-S Marschallinger R. Automatic mineral classification in the macroscopic scale. Computers & Geosciences. 1997;23(1):119–126. https://doi.org/10.1016/S0098-3004(96)00074-X Berry R., Walters S.G., McMahon C. Automated mineral identification by optical microscopy. In: Ninth International Congress for Applied Mineralogy. Brisbane, Australia, 8–10 September 2008. Brisbane: QLD; 2008. Pp. 91–94. Shoji T., Keneda H. An interactive system to assist mineral identification in ore microscopy. Mathematical Geology. 1994;26:961–972. https://doi.org/10.1007/BF02083424 López-Benito A., Catalina J. C., Alarcón D., et al. Automated ore microscopy based on multispectral measurements of specular reflectance. I–A comparative study of some supervised classification techniques. Minerals Engineering. 2020;146:106136. https://doi.org/10.1016/j.mineng.2019.106136 Berrezueta E., Ordóñez-Casado B., Bonilla W., Banda R., Castroviejo R., Carrión P., Puglla S. Ore petrography using optical image analysis: application to Zaruma-Portovelo deposit (Ecuador). Geosciences. 2016;6(2):30. https://doi.org/10.3390/geosciences6020030 Köse C., Alp I., İkibaş C. Statistical methods for segmentation and quantification of minerals in ore microscopy. Minerals Engineering. 2012;30:19–32. https://doi.org/10.1016/j.mineng.2012.01.008 Krawczykowska A., Trybalski K., Krawczykowski D. The application of modern techniques and measurement devices for identification of copper ore types and their properties. Archives of Mining Sciences. 2013;58(2):433–448. https://doi.org/10.2478/amsc-2013-0029 Iglesias J. C. A, Augusto K. S, Gomes O. D. F. M., et al. Automatic characterization of iron ore by digital microscopy and image analysis. Journal of Materials Research and Technology. 2018;7(3):376–380. https://doi.org/10.1016/j.jmrt.2018.06.014 Tang K., Chen J., Zhou H., Liu J. Deep convolutional neural network for 3D mineral identification and liberation analysis. Minerals Engineering. 2022;183:107592. https://doi.org/10.1016/j.mineng.2022.107592 Zhou Z., Yuan H., Cai X. Rock Thin section image identification based on convolutional neural networks of adaptive and second-order pooling methods. Mathematics. 2023;11(5):1245. https://doi.org/10.3390/math11051245 Kirillov A., Mintun E., Ravi N., et al. Segment anything. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2023;4015–4026. https://doi.org/10.48550/arXiv.2304.02643 Hatamizadeh A., Kautz J. Mambavision: A hybrid mamba-transformer vision backbone. arXiv preprint arXiv: 2407.08083. 2024. https://doi.org/10.48550/arXiv.2407.08083 Liu M. W., Lin Y. H., Lo Y. C., et al. Defect Detection of grinded and polished workpieces using faster R-CNN. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2021. Pp. 1290–1296. https://doi.org/10.1109/AIM46487.2021.9517664 Zhongliang L. V., Zhenyu Lu., Kewen Xia., et al. LAACNet: Lightweight adaptive activation convolution network-based defect detection on polished metal surfaces. Engineering Applications of Artificial Intelligence. 2024;133(E):108482. https://doi.org/10.1016/j.engappai.2024.108482 Sivkova T., Gusev A., Syropyatov A. Technology for cast iron microstructure analysis in SIAMS software using neural networks. In: Proceedings of the 31th International Conference on Computer Graphics and Vision. September 27–30, 2021, Nizhny Novgorod, Russia. 2021;2:772–780. Amaral B., Soares A.K., Iglesias J.C.Á., Caldas T.D.P., Santos R.B.M., Paciornik S. Instance segmentation of quartz in iron ore optical microscopy images by deep learning. Minerals Engineering. 2024;211:108681. https://doi.org/10.1016/j.mineng.2024.108681 Maitre J., Bouchard K., Bédard L.P. Mineral grains recognition using computer vision and machine learning. Computers & Geosciences. 2019;130:84–93. https://doi.org/10.1016/j.cageo.2019.05.009 Song Y., Huang Z., Shen C., et al. Deep learning-based automated image segmentation for concrete petrographic analysis. Cement and Concrete Research. 2020;135:106118. https://doi.org/10.1016/j.cemconres.2020.106118 Donskoi E., Hapugoda S., Manuel J. R., et al. Automated optical image analysis of iron ore sinter. Minerals. 2021;11(6):562. https://doi.org/10.3390/min11060562 Donskoi E., Poliakov A. Advances in optical image analysis textural segmentation in ironmaking. Applied Sciences. 2020;10(18):6242. https://doi.org/10.3390/app10186242 Santoro L., Lezzerini M., Aquino A., et al. A novel method for evaluation of ore minerals based on optical microscopy and image analysis: preliminary results. Minerals. 2022;12(11):1348. https://doi.org/10.3390/min12111348 Su C., Wang Y., Zhu J., Zhang X. C. Rock classification in petrographic thin section images based on concatenated convolutional neural networks. Earth Science Informatics. 2020;13:1477–1484. https://doi.org/10.1007/s12145-020-00505-1 Tang H., Wang H., Wang L., et al. An improved mineral image recognition method based on deep learning. JOM. 2023;75:2590–2602. https://doi.org/10.1007/s11837-023-05792-9 Khvostikov A. V., Korshunov D. M., Krylov A. S., Boguslavskii M. A. Automatic identification of minerals in images of polished sections. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2021;XLIV-2/W1-2021:113–118. https://doi.org/10.5194/isprs-archives-XLIV-2-W1-2021-113-2021 Chen H., Zhang H., Yang G. A., Zhang L. Mutual information domain adaptation network for remotely sensed semantic segmentation. In: IEEE Transactions on Geoscience and Remote Sensing. 2022;60:1–16. https://doi.org/10.1109/TGRS.2022.3203910 Nasim M. K., Tannistha M., Shrivastava A., Singh T. Seismic facies analysis: a deep domain adaptation approach. In: IEEE Transactions on Geoscience and Remote Sensing. 2020;60:1–16. https://doi.org/10.1109/TGRS.2022.3151883 Lin D., Dai J., Jia J., et al. Scribblesup: Scribble-supervised convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, NV, USA; 2016. Pp. 3159–3167. https://doi.org/10.1109/CVPR.2016.344 Chen X., Cheung Y. S. J., Lim S. N., Zhao H. ScribbleSeg: Scribble-based interactive image segmentation. arXiv preprint arXiv: 2303.11320. 2023. https://doi.org/10.48550/arXiv.2303.11320 Cheng B., Parkhi O., Kirillov A. Pointly-supervised instance segmentation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). New Orleans, LA, USA; 2022. Pp. 2617–2626. https://doi.org/10.1109/CVPR52688.2022.00264 Tang H., He. L., Huang B, et al. Segmentation and labeling of polished section images based on deep learning. Mining, Metallurgy & Exploration. 2025;42:1053–1063. https://doi.org/10.1007/s42461-025-01205-4 Tabani H., Balasubramaniam A., Marzbanet S., et al. Improving the efficiency of transformers for resource-constrained devices. In: 24th Euromicro Conference on Digital System Design (DSD). Palermo, Italy; 2021. Pp. 449–456. https://doi.org/10.1109/DSD53832.2021.00074 Bressan P. O., Junior J. M. Martins J. A. C., et al. Semantic segmentation with labeling uncertainty and class imbalance. International Journal of Applied Earth Observation and Geoinformation. 2022;108:102690. https://doi.org/10.1016/j.jag.2022.102690 Li Z., Kamnitsas K., Glocker B. Analyzing overfitting underclass imbalance in neural networks for image segmentation. In: IEEE Transactions on Medical Imaging. 2021;40(3):1065–1077. https://doi.org/10.1109/TMI.2020.3046692 Kochkarev A., Khvosticov A., Korshunov D., Boguslavskii M. Data balancing method for training segmentation neural networks. In: Proceedings of the 30th International Conference on Computer Graphics and Machine Vision (GraphiCon 2020). Saint Petersburg, Russia, 22–25 September. Saint Petersburg: Ceur Workshop Proceedings; 2020. Ronneberger O., Fischer P., Brox T. U-Net: Convolutional networks for biomedical image segmentation. B: Navab N. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015. Cham: Springer; 2015. Pp. 234–41. https://doi.org/10.1007/978-3-319-24574-4_28 Zhao H., Shi J., Qi X., et al. Pyramid scene parsing network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, HI, USA; 2017. Pp. 2881–2890. https://doi.org/10.1109/CVPR.2017.660 Xiao T., Liu Y., Zhou B., et al. Unified perceptual parsing for scene understanding. In: Ferrari V., Hebert M., Sminchisescu C., Weiss Y. (eds.) Computer Vision – ECCV 2018. ECCV 2018. Lecture Notes in Computer Science. Vol 11209. Springer, Cham; 2018. Pp. 418–434. https://doi.org/10.1007/978-3-030-01228-1_26 Rezatofighi H., Tsoi N., Gwak J., et al. Generalized intersection over union: A metric and a loss for bounding box regression. In: Proceedings of the IEEE. 2019. Pp. 658–666. https://doi.org/10.48550/arXiv.1902.09630 Reinhard E., Adhikhmin M., Gooch B., Shirley P. Color transfer between images. In: IEEE Computer Graphics and Applications. 2001;21(5):34-41. https://doi.org/10.1109/38.946629 Indychko O. I., Khvostikov A. V., Korshunov D. M., Boguslavskii M. A. Color adaptation in images of polished sections of geological specimens. Computational Mathematics and Modeling. 2022;33:487–500. https://doi.org/10.1007/s10598-023-09588-z Wolf S. Color correction matrix for digital still and video imaging systems. Washington, D.C.: National Telecommunications and Information Administration; 2003. 28 p. Sharma G., Wu W., Dalal E. N. The CIEDE2000 color-difference formula: Implementation notes, supplementary test data, and mathematical observations. Color Research & Application. 2005;30(1):21–30. https://doi.org/10.1002/col.20070 Razzhivina D. I., Korshunov D. M., Boguslavskiy M. A., et al. Registration and segmentation of PPL and XPL images of geological polished sections containing anisotropic minerals. Computational Mathematics and Modeling. 2024;34:16–26. https://doi.org/10.1007/s10598-024-09592-x Lowe D. G. Distinctive image features from scale invariant keypoints. International Journal of Computer Vision. 2004;60:91–110. https://doi.org/10.1023/B:VISI.0000029664.99615.94 Fischler M. A., Bolles R. C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM. 1981;24(6):381–395. Ro S.-H., Kim S.-H. An image stitching algorithm for the mineralogical analysis. Minerals Engineering. 2021:169;106968. https://doi.org/10.1016/j.mineng.2021.106968 Nikolaev G., Korshunov D., Khvostikov A. Automatic stitching of panoramas for geological images of polished sections. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2024;X-2/W1-2024:39–46. https://doi.org/10.5194/isprs-annals-X-2-W1-2024-39-2024 Brown D. C. Decentering distortion of lenses. Photogrammetric Engineering. 1966:32(3);444–462. Seibert J. A., Boone J. M., Lindfors K. K. Flat-field correction technique for digital detectors. In: Proceedings of SPIE, Medical Imaging 1998: Physics of Medical Imaging. 1998:3336;348–354. https://doi.org/10.1117/12.317034 Sun J., Shen Z., Wang Y., et al. LoFTR: Detector-free local feature matching with transformers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). 2021. Pp. 8922–8931. https://doi.org/10.48550/arXiv.2104.00680 Boykov Y., Kolmogorov V. An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. In: IEEE Transactions on Pattern Analysis and Machine Intelligence. 2004;26(9):1124–1137. https://doi.org/10.1109/TPAMI.2004.60 Achanta R., Shaji A., Smith K., et al. SLIC superpixels compared to state-of-the-art superpixel methods. In: IEEE Transactions on Pattern Analysis and Machine Intelligence. 2012;34(11):2274–2282. https://doi.org/10.1109/TPAMI.2012.120 Felzenszwalb P. F., Huttenlocher D. P. Efficient graph-based image segmentation. International Journal of Computer Vision. 2004:59;167–181. https://doi.org/10.1023/B:VISI.0000022288.19776.77 Indychko O., Korshunov D., Khvostikov A. Using uncertainty to expand training sets for mineral segmentation in geological images. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 2025. In press. Franco L., Mandica P., Kallidromitis K., et al. Hyperbolic Active Learning for Semantic Segmentation under Domain Shift. In: Proceedings of the 41st International Conference on Machine Learning. 2024. https://doi.org/10.48550/arXiv.2306.11180 Khvostikov A., Ippolitov V., Krylov A., et al. PathScribe: new software to work with whole slide histological images for education and research. In: Proceedings of the 2023 8th International Conference on Biomedical Imaging, Signal Processing. Singapore: ACM; 2023. Pp. 63–70. https://doi.org/10.1145/3634875.3634884
Supplementary files

