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Abstract. This study offers a comparative assessment of two methodologies for mitigating soil swelling in marl and clay soils.
The methods under investigation include the use of natural plant fibers (Alfa, jute, sisal) and polypropylene fibers in combi-
nation with lime-pozzolana cement. Laboratory tests, including Proctor compaction tests, and swell potential assessments,
were conducted to assess the effectiveness of each method. The findings reveal that both natural plant fibers and polypropy-
lene fibers, when combined with lime-pozzolana cement, effectively reduce soil swelling. The study underscores the promise
of eco-friendly natural plant fibers and the durability of polypropylene fibers as viable solutions for soil stabilization. Fur-
thermore, incorporating lime-pozzolana cement enhances both methods performance, providing an additional layer of soil
stability. This research contributes valuable insights to geotechnical engineering projects dealing with marl and clay soils.
It aids in the selection of suitable soil stabilization techniques, considering project-specific needs and sustainability concerns.
Ultimately, this study advances the field of geotechnical engineering by promoting environmentally conscious and resilient
solutions to address soil swelling in clay and marl soils.
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AHHOTa].llfli[. B AAHHOM HCC/JIeJOBAHHUU JaHA CPAaBHHUTEJIbHAA OL€HKA ABYX METOAUK CHUXEHUSA Ha6yxaHm{ I'PyHTa B Mep-
reJIbHO-TJIMHUCTLBIX IT04YBax. I/Iccne,qyeMbIe METO/bl BKJIDYAKT UCII0JIb30BAHHUE HATYPaJIbHbIX PAaCTUTEJ/IbHbIX BOJIOKOH [Alfa,
HAXKYT, CI/IBaJ'Ib) " NOJIMINIPOINUJIEHOBBIX BOJIOKOH B COY€TAaHUHU C U3BECTKOBO-MTYLIIOJIAHOBBIM LIEMEHTOM. [[J'Iﬂ OLIEHKH 3¢¢)6K-
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TUBHOCTH KQXI0r0 MeTO0/ja GbLIM NPOBEIEHbI JIA60PaTOPHbIE UCIIBITAHMUS], BKJIIOYAKOLIME TECTHI HAa YIJIOTHEHHUE 110 METOAY
[IpoKTOpa M OLeHKY NOTeHIMala BCyYMBaHHUs. Pe3yibTaThl IOKa3a/Iy, YTO KaK HaTypa/ibHble PaCTUTEJbHbIE BOJIOKHA, TaK
Y MOJIUNIPOIMJIEHOBBIE BOJIOKHA B COYETAaHUH C U3BECTKOBO-NYLL[0JIAHOBBIM 11eMEHTOM 3 (GEKTHUBHO CHIXKAIOT HabyxaHHe
rpyHTa. MccieoBaHue MoJ4epKUBaeT NEPCHEKTUBHOCTb 3KOJOTMYECKH YUCTBIX HATYpaJIbHbIX PACTUTE/bHBIX BOJIOKOH U
JIOJITOBEYHOCTDb MOJIMIIPONM/IEHOBBIX BOJIOKOH Kak 3 }EKTUBHBIX pelleHUH s cTabuan3anuu rpyHta. Kpome Toro, fo-
6aBJIeHHEe U3BECTKOBO-IIyL1l0JIaHOBOrO leMeHTa NOBbIMAeT 3 PEKTUBHOCTb 060UX METO/0B, 00ecredrnBasi JONOJIHUTEb-
HBIM CJI0H CTaGUJIBHOCTU IpyHTA. [JlaHHOE HCCle/joBaHUe BHOCUT LIeHHBIH BKJaJ B MHXEHEPHO-Ie0JIOTHYeCKHe MPOEKTHI,
CBSI3aHHbIE C MePreJIbHO-IJIMHUCTBIMU rpyHTaMu. OHO ITOMOTaeT BbIOPATh MOAXOASIME MeTO/bl CTabUIM3alMK IPYHTaA C
y4eToM crenrpUKH NpoeKTa U coobpakeHUH ycTOMYMBOCTH. JJaHHOe HccleJoBaHUe CIIOCOGCTBYET Pa3BUTHIO TeOTeXHUYe-
CKOM MHXXeHepHH, Npejjiaras 3KOJOTHYecKH Ge3olacHble U YCTOMYMBLIE pellleHUsA [JJ/Is 60ppObl ¢ HabyxaHWeM I'PyHTa B
[JIMHUCTBIX U MEPreJIMCThIX I0YBaXx.

KiroueBbie ci0oBa: CTa6I/IfII/I3aL[I/IH I'PYHTOB, CHUXKE€HHE Ha6yXaHI/IH, HaTypaJibHbl€ paCTUTEJ/IbHbI€ BOJIOKHA, IIOJIMIIPOIINJIEe-
HOBO€ BOJIOKHO, I/ISBeCTKOBO'HyHL[OJIaHOBbIﬁ LEeMEeHT

BaarogapHocTu: ABTOpPHI 6/1aroJjapAT J1abopaToOpPUI0 KOHTPOJIA MaTepHasIoB M NOYB 3a NIPel0CTaBJIeHHY0 BO3MOXHOCTb
COTPYZHUYECTBA B paMKaXx 3KCIIEPUMEHTAILHOTO IPOEKTa.

Jna oputupoBanMa: diab Mamxkug A, Bab6a X, Pa3syk f. CpaBHUTeNbHBIH aHA/IW3 CHU)KEHHUs1 HAaOyXaHWs MepreJbHO-
[JIMHUCTBIX IPYHTOB: HaTypaJibHble pacTUTeJbHbIe BosIoKHA (Alfa, [KyT, cu3asb) NPOTUB MOJUIPONHUIEHOBOH GUOPHI C
M3BECTKOBO-NYLII0JIAHOBLIM LIEMEHTOM IIPHU NPOKTOPHOM yIIoTHEHUH // U3BecTus1 TOMCKOro NOJIUTEXHUYECKOTO YHHUBED-
cuteta. UE>XXMHUPUHT reopecypcoB. - 2024. - T. 335. - N2 4. - C. 52-63. DOI: 10.18799/24131830/2024 /4 /4410

Introduction Fiber reinforcement, improved water retention, and

Marl and clay soils, characterized by their fine par-  erosion control are among the benefits that these natu-
ticles, high plasticity, and sensitivity to moisture con-  ral plant fibers offer [6, 7]. In parallel, the deployment
tent, are integral components of geotechnical engineer-  of synthetic fibers, particularly polypropylene, has
ing projects globally. These soils, while prevalent, are  arisen as a compelling alternative [8, 9]. Polypropylene
notorious for their inherent susceptibility to volumetric ~ fibers have earned their place in the realm of geotech-
changes, primarily swelling and shrinkage, in response  nical engineering for their durability, resistance to en-
to variations in moisture content. These soils remarka-  vironmental degradation, and exceptional tensile
ble plasticity is a testament to their versatility and a  strength. Their applications extend to crack reduction,
source of formidable challenges in civil engineering improved load-bearing capacity, and enhanced resili-
and construction [1-6]. The magnitude of these chal-  ence to cyclic loading, making them a formidable con-
lenges cannot be overstated. Swelling and shrinkage in  tender in the realm of soil stabilization [10-12]. Fur-
clay and marl soils pose substantial threats to the struc-  thermore, the deployment of lime-pozzolana cement
tural integrity and long-term stability of civil engineer- (LPC) as a soil stabilizer has displayed significant
ing structures and infrastructure. Foundation settle- promise in ameliorating the swelling behavior of clay-
ment, pavement distress, and building damage are buta ey and marly soils [13, 14]. LPC operates as a poz-
few of the pernicious consequences associated with  zolanic material and cementitious binder, engendering
these soil behaviors. It is a complex interplay of geo- a transformation in soil characteristics. Reduced plas-
logical factors, climatic conditions, and human activi- ticity, enhanced compressive strength, and improved
ties that conspire to render these soils particularly chal-  durability are among the effects of this treatment
lenging. As a result, the mitigation of swelling and  [2, 15]. This research article endeavors to proffer an
shrinkage issues in clay and marl soils has remained a  exhaustive comparative analysis of these two distinct
primary focus of geotechnical research and practice for  methodologies for swelling reduction in clay and marl
decades. The imperative to find effective solutions to  soils. As a testament to our dedication, we embark on a
these challenges has driven the exploration of numer-  comprehensive exploration of these methodologies,
ous soil stabilization techniques. Among these tech-  deploying a carefully designed array of laboratory tests
niques, the incorporation of natural plant fibers into the  and evaluations. Our rigorous approach encompasses
soil matrix has emerged as a prominent avenue of in-  Proctor compaction tests, California Bearing Ratio
vestigation [2-5]. Natural plant fibers, such as Alfa (CBR) tests, unconfined compressive strength tests,
(scientifically known as Medicago sativa), jute (Cor- and exhaustive swell potential assessments. Our core
chorus capsularis), and sisal (Agave sisalana), have objective is to furnish empirical evidence concerning
garnered significant attention due to their ecological the efficacy of natural plant fibers, polypropylene fi-
advantages. These fibers possess inherent qualities of  bers, and LPC in soil stabilization. We aim to do jus-
biodegradability, renewability, and the potential to en-  tice to the complexities of soil behavior, considering
hance soil properties through a myriad of mechanisms.  the intricate interplay of soil properties, fiber types,
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proportions, and the dosages of LPC. Moreover, this
research journey will probe deeper into the influence of
varying fiber types, proportions, and the precise dosage
of LPC on the geotechnical properties of clay and marl
soils. It is our mission to illuminate the path for ge-
otechnical engineers and practitioners, empowering
them to navigate the nuanced terrain of soil stabilization
techniques with informed decision-making. We recog-
nize that the exigencies of each project are unique, influ-
enced by project-specific requirements, sustainability
considerations, and the distinctive geologic and hydro-
logical characteristics of the soil. This research aspires to
be a beacon in the realm of geotechnical engineering.
Our comprehensive analysis will bridge the chasm be-
tween laboratory findings and real-world engineering
applications, ushering in a new era of sustainable and
resilient infrastructure development. We are committed
to advancing the science of soil stabilization, paving the
way for a greener and more resilient future in civil engi-
neering and construction.

Experimental program
Sample collection and preparation

During the initial phase of our research, we meticu-
lously procured soil samples from the Fez-Meknes re-
gion in Morocco [8]. These samples were acquired dur-
ing the construction of a hospital in Tahla and a local
road, identified during geotechnical surveys [3,4].
A diverse array of experiments was subsequently con-
ducted to elucidate the geotechnical properties of these
two collected soil samples [8]. The clay and marl soils
subjected to our study have been classified as exception-
ally plastic A3 [8], in accordance with GTR 92 guide-
lines [16]. This classification is grounded in a compre-
hensive analysis that incorporates various correlations
and the findings derived from soil identification tests, as
meticulously documented in Table 1. It is worth noting
that both samples exhibited a notable propensity for high
to very high levels of soil swelling [17-21], particularly
within the domains where marl and clay soils predomi-
nate. To guarantee an exhaustive representation of sub-
surface conditions, our sampling strategy involved the
collection of samples at diverse depths. These soil spec-
imens were vigilantly transported to our laboratory,
carefully enclosed within hermetically sealed containers
to safeguard against moisture fluctuations during transit.

Upon their arrival at the laboratory, our research
team meticulously adhered to a rigorous and standard-
ized protocol. This included subjecting the soil samples
to a controlled air-drying process until they reached a
consistent and stable weight. Following this crucial step,
the samples underwent uniform crushing and meticulous
sieving through a 2 mm mesh to meticulously eliminate
coarse particles. Subsequently, the samples were sub-
jected to thorough mixing, ensuring the attainment of
sample homogeneity, thereby establishing a consistent
foundation for our subsequent testing procedures.

Table 1. Characteristics of the soil samples [9]
Ta6auya 1. Xapakmepucmuku 06pa3yos nouswl [9]
Clay soil Marl soil
Parameter
Mapamerp ['nuHucTas Meprenucras
no4Ba no4sa

particle size analysis
rpaHyJIoMeTpUYeCKUI aHaIu3

%-<0.08 mm 93.7 95.5

%<2 mm 98.7 99.7

%<20 mm 100 100
Water content w (%)
CopeprkaHue Baard w (%) 166 19
Atterberg limits
[penenbl ATTepbepra
Liquid limit LL (%) 62 55
[Ipenen Texydectu LL (%)
Plasticity index PI (%) 38 37
Wnpekc mnactuaHoctH Pl (%)
Classification
Knaccudukauus A3 A3

Fiber selection and preparation

The selection and preparation of fibers were exe-
cuted with meticulous attention to detail. Our research
team meticulously sourced natural plant fibers (Alfa,
jute, and sisal) from reputable suppliers, guaranteeing
their quality and integrity, as meticulously documented
in Table 2.

Table 2. Properties of Alfa, jute, and sisal fiber [8]
Ta6auya 2. Ceolicmea aabul, dicyma u cu3anesozo 80/10K-
Ha [8]
. Alfa fiber Jute fiber Sisal fiber
Properties
. Anbda- JxyToBOE CusaneBoe
CBoiicTBa
BOJIOKHO BOJIOKHO BOJIOKHO
Density (g/m?3) _ _
lnotracen (c/s) 1.3-1.4 1.3-1.4 1.4
Diameter (um) 5-22 15-35 10-20
[uameTp (MKM)
Tensile strain (%)
Jledopmanus npu 1.4-5 1.5-1.8 2-2.5
pactspkenuu (%)
Tensile strength (Mpa)
[IpoyHOCTH IPU 173.4-1327 400-800 511-635
pactsxenuu (Mma)
Young’s modulus (Gpa) 5 B _
Moy 10mra (Fa) 18-58 10-30 9.4-22
Cellulose (%)
lennionosa (%) 38.8-47.6 67-71.5 67-78
Lignin (%) _ _ 5
J—— 14.9-24 12-13 8-11
Microfibrillar angle _ ge 11°
Yros MUKpodUGpHIILI
Wax (%)
Bock (%) 1.5-5 0.5 2
i- 0, —
Hemi-Cellulose (%) 22.1-38.5 13.6-20.4 10-14.2
T'emu-nesoiosa (%)
References
CobUIKH [27] [22,23] [22, 23]
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These fibers underwent a stringent cleansing pro-
cess to eliminate any potential contaminants. Subse-
quently, they were subjected to a comprehensive dry-
ing procedure to eliminate moisture content, thus facili-
tating precise measurements. Uniformity was main-
tained by meticulously cutting the fibers to standard-
ized lengths. In the case of polypropylene fibers, we
selected filament polypropylene (PP) fibers that were
carefully extracted from sweepers and held well-
documented specifications. These PP fibers utilized in
our research exhibit a comprehensive range of physi-
cal, chemical, and mechanical properties, augmenting
their suitability for a wide array of applications. With a
specific gravity of 0.89, this PP fiber is notably light-
weight, greatly facilitating its handling and application.
Its remarkable tensile strength of 0.67 kN/mm? allows
it to endure significant loads and stresses without suc-
cumbing to deformation, rendering it an exemplary
choice for reinforcement applications. With Young's
modulus of 4.00 kKN/mm?, this fiber showcases its abil-
ity to withstand substantial forces while retaining its
structural integrity. Furthermore, its melting point
range of 160—170°C ensures stability when exposed to
elevated temperatures, making it a fitting choice for
applications that demand heat resistance. This fiber
high ignition point at 590°C underscores its resilience
to ignition at lower temperatures, thus enhancing safety
across various contexts. It boasts a bulk density of 910
kg/m3, a characteristic that greatly facilitates its easy
handling and application. Furthermore, its loose densi-
ty, ranging from 250-430 kg/m?, accommodates di-
verse requirements across various applications. It is
offered in cut lengths of 10, 15, 20, and 25 mm, effec-
tively catering to specific project needs. This PP fiber
also demonstrates excellent dispersion characteristics,
ensuring uniform distribution within materials such as
concrete, thereby elevating their overall strength and
durability. Additionally, it exhibits notable resistance
to acids and salts, making it a dependable choice for
applications exposed to corrosive substances. Moreo-
ver, its inherent chemical-proof nature guarantees en-
during performance, particularly when faced with chal-
lenging and harsh environmental conditions. These
fibers remained unaltered to preserve their original
characteristics and to maintain consistency across our
experiments, precise measurements of fiber proportions
were meticulously executed, accounting for the dry
weight of the soil samples. This thorough approach
allowed us to prepare the fibers with the utmost preci-
sion in anticipation of subsequent testing procedures.

Soil stabilization methods

The essence of our experiment revolves around the
exploration of soil stabilization methods. The approach
was systematically organized into distinct phases. For
the integration of natural plant fibers (Alfa, jute, and
sisal) with soil samples, proportions were methodically
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varied, ranging from 1 to 18% by weight of dry soil.
This systematic variation facilitated an investigation
into the influence of different fiber concentrations on
soil stabilization.

Simultaneously, in the context of polypropylene fi-
ber stabilization, varying fiber content percentages,
spanning from 0.1 to 1.8% by weight of dry soil, were
introduced. This spanned a spectrum of concentrations,
providing a comprehensive assessment of the impact of
varying fiber levels on soil stability. In select samples,
LPC was introduced in different dosages, ranging from
1 to 18% by weight of dry soil. This deliberate varia-
tion enabled a comprehensive exploration of the effects
of this stabilizing agent on soil properties, contributing
to a richer understanding of our study scope.

Laboratory testing

In our laboratory testing, we employed a systematic
approach to examine soil-fiber-cement mixtures. The
central method was the Proctor compaction test, con-
ducted meticulously to determine maximum dry densi-
ty and optimum moisture content. Sample preparation
ensured representative materials, and data on weight,
moisture content, and compaction were collected.
Swelling behavior was assessed alongside data analysis
to draw meaningful conclusions. All tests were repeat-
ed for reliability, contributing to a comprehensive in-
vestigation of these mixtures in our research.

Data analysis

To extract meaningful insights from our experi-
ments, a rigorous data analysis process was employed.
The methodical approach allowed us to discern the
effectiveness of each soil stabilization technique under
scrutiny. Visual representations, such as graphs and
charts, were generated to offer a clear, concise visuali-
zation of the variations in soil properties corresponding
to different fiber types, proportions and lengths.

Quality control

To maintain the integrity and reliability of our ex-
perimental data, strict quality control measures were
diligently implemented. Our laboratory equipment was
regularly calibrated to ensure precision and consistency
in our measurements. Adherence to well-established
testing standards, such as ASTM [24-28], was strictly
followed throughout our experiments, upholding the
highest standards of scientific rigor. These quality con-
trol practices reinforced the credibility of our findings
and ensured the robustness of our conclusions.

Results and discussion

Exploring the impact of time on swelling potential
Exploring the relationship between time and per-

centage swelling in standard Proctor compaction tests

on pristine clay and marl samples, which were rein-

forced with various materials including PP fiber, ce-
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ment, and a range of plant fibers such as Alfa, jute,
sisal, and a composite of these three, has yielded intri-
guing findings. The results indicate a gradual increase
in swelling over time, with stabilization occurring after
4320 minutes.

PP fiber with LPC: in this study, it was observed that
the combination of PP fiber with LPC was highly effec-
tive in reducing swelling in both clay and marl samples
as presented in Fig. 1, 2. The key findings include:
Higher percentage: when compared to plant fibers,
the PP fiber with LPC mixture (1.8% PP+18%
LPC) had a higher percentage reduction in swelling.
This suggests that the synthetic PP fibers, when
combined with the cementitious material, have a
stronger impact on swelling reduction compared to
plant fibers.

Length effect: the study also revealed that increas-
ing the length of PP fibers in the mixture further
enhanced the reduction in swelling as seen in Fig. 3.
This indicates that longer PP fibers (L=25mm) cre-
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Swell (%)

10

ate a more effective reinforcement network within

the soil, which is better at controlling swelling.

Plant fiber reinforcements (Alfa, jute, sisal): on the
other hand, the use of plant fibers like Alpha, jute, and
sisal in the clay and marl samples also led to reductions
in swelling, but the effectiveness was lower compared
to the PP fiber with LPC. Key observations for plant
fibers include:
Higher percentage: despite having higher percent-
ages of plant fibers in the mixture (18%), their
swelling reduction effect was not as significant as
that of PP fiber with LPC. This implies that plant
fibers alone may not provide as robust reinforce-
ment against swelling.
Length effect: similar to PP fibers, increasing the
length of plant fibers (L=25 mm) also contributed
to a reduction in swelling as represented in Fig. 3.
However, even with longer fibers, the reduction
was still less pronounced than with PP fiber and
cement.
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Time-percent swelling correlation in standard Proctor compaction for clay soil reinforced with: (a) PP filament fiber

CoomHoweHue epemeHUu U npoyeHma HAGYXAHUS Npu CMAHOAPMHOM YNAOMHEHUU 2/AUHUCMO20 2pyHmd,

apMuposaHHozo: (a) noaAuUnponuIeHO8bIM 80/10KHOM U U38ECMKO80-NYYY0A0HO8bIM YyeMeHmoM; (b) pacmumenbHbim

80/10KHOM
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Fig. 2. Time-percent swelling correlation in standard Proctor compaction for marl soil reinforced with: (a) PP filament fiber
and LPC; (b) plant fiber
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Fig. 3. Swelling behavior as a function of fiber length (plant and PP fiber)
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The results of the study indicate that when it comes
to reducing swelling in clay and marl samples, the
combination of PP fiber with LPC was more effective
than using plant fibers alone. Additionally, increasing
the length of the reinforcing fibers, whether synthetic
or plant-based, generally led to improved performance
in reducing swelling. This information can be valuable
in selecting the most effective materials and configura-
tions for soil stabilization in construction and geotech-
nical engineering projects.

Numerous studies in geotechnical engineering have
consistently demonstrated the substantial reduction of
soil swelling with the incorporation of natural or syn-
thetic fibers, and these reductions often correlate with
increasing fiber content and length. For instance, di-
verse research [29-32] found that as the content of jute
fibers increased in expansive clay soil, there was a pro-
portional decrease in soil swelling. Similarly, various
investigations [7, 33-36] reported a significant reduc-
tion in swelling behavior with the introduction of long-
er polypropylene fibers into clayey soils. These find-
ings underscore the effectiveness of higher fiber con-
tent and longer fiber lengths in enhancing soil stability
and mitigating the adverse effects of swelling.

Potential swell influence on swelling pressure across
different soil types

Swelling pressure, a pivotal factor in soil me-
chanics, exhibits a direct correlation with the swell-
ing potential of different soil types. When evaluating
marl and clay soils, it becomes apparent that clay
soil typically manifests higher swelling pressure and
greater swelling potential in comparison to marl soil.
This swelling propensity, however, can be signifi-
cantly impacted by the inclusion of plant fiber addi-
tives.

As the content and length of plant fibers increase
within the soil mixture, the swelling pressure in both
marl and clay soils tends to diminish. This decline is
attributed to the reinforcing qualities of plant fibers,
which act as stabilizing agents, counteracting the ex-
pansive nature of these soils.

Moreover, the introduction of LPC into the soil
composition yields noteworthy effects on swelling
pressure. In reinforced marl soil, the swelling pressure
surpasses that of clay soil, signifying the constructive
influence of LPC in reducing swelling potential and
enhancing soil integrity.
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Fig. 4. Swell pressure vs. swell: comparative study with and without reinforcement, varied compaction energies: (a) clay soil,
(b) marl soil
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Notably, in soil blends incorporating PP fibers
along with LPC, swelling pressure exhibits enhanced
stability. This indicates that the combination of PP fi-
bers and cement offers a more enduring and dependa-
ble solution for managing swelling pressure when
compared to plant fibers alone.

Our research underscores the efficacy of PP in con-
junction with LPC as a superior alternative to plant
fiber additives for addressing soil-related challenges.
Our study clearly demonstrates that the PP-cement
blend has a more pronounced impact on reducing
swelling pressure and improving soil stability com-
pared to plant fiber reinforcement. These results align
with a growing body of evidence supporting the
strength and durability of PP fibers, which offer a ro-
bust, long-lasting reinforcement mechanism. Further-
more, the cohesive properties of LPC synergize with
PP fibers, resulting in heightened soil stability. These
findings emphasize the potential of PP combined with
LPC as a preferred choice for engineering solutions
aimed at mitigating swelling pressure and enhancing
soil performance in various geotechnical applications.

Swelling pressure in soils is influenced by the in-
herent swelling potential of the soil type, the presence
of PP fibers, and the addition of LPC. Understanding
these dynamics is crucial for developing engineering
solutions that effectively manage soil swelling and en-
sure the stability of construction projects.

Comparing our research findings with those of pre-
vious studies provides valuable insights into the broad-
er context of our work. In contrast to some earlier re-
search, our results reveal distinctive patterns in soil
behavior under varying conditions. While some prior
studies may have reported similar trends regarding
swelling pressure and soil additives [36-45], our re-
search extends this understanding by specifically fo-
cusing on marl and clay soils and their response to
plant fibers [3, 4] and LPC with PP.

18
16
14
12
10

Swell (%)

o N b O

=

Furthermore, our findings highlight the unique dy-
namics of reinforced marl soil, which demonstrates
higher swelling pressure compared to clay soil when
treated with LPC. This diverges from certain earlier
research that might have suggested different outcomes.

Overall, our research contributes to the evolving
body of knowledge in soil mechanics and provides
valuable data for engineering applications. By building
upon and refining existing research, we strive to offer a
more comprehensive and nuanced understanding of
soil behavior, ultimately aiding in the development of
more effective solutions for construction and geotech-
nical projects.

Exploring the influence of maximum dry density on
potential swell in various soil types

The evolution of soil swells as a function of dry
maximum density can be described as a distinctive
convex curve, mirroring the characteristic shape of the
Proctor curve [46]. In our comprehensive study, we
observed a compelling trend wherein the sample rein-
forced with PP fibers exhibited significantly greater
stability when compared to the sample reinforced with
natural plant fibers, which, in its turn, was more stable
than the unaltered virgin soil sample. This progression
is in accordance with logical expectations, as the intro-
duction of reinforcing fibers, regardless of their origin,
tends to fortify the structural integrity of the soil. Fur-
thermore, the type of soil played a pivotal role in shap-
ing these findings. Remarkably, the clay soil, despite
its innate expansiveness, displayed notably more stable
results compared to the marl soil as presented in Fig. 5.
This intriguing outcome underscores the considerable
potential of soil improvement techniques, such as fiber
reinforcement, in not only mitigating the detrimental
effects of soil expansion but also in enhancing overall
soil stability and performance in diverse geological
contexts.

Virgin clay sample

e C5+1.8% PP (L=25mm)+18% LPC
CS+18% Mixture of ALFA-JUTE-SISAL (L=25mm)
Virgin marl sample

e [V|S+1.8% PP (L=25mm)+18% LPC

MS+18% Mixture of ALFA-JUTE-SISAL

10 18
Maximum Dry Density (KN/m3)
Fig. 5.

20

Correlation between swell and maximum dry density across diverse sample types
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Our research findings are in line with several prior
studies that have explored the relationship between soil
swell and maximum dry density [47]. In particular, our
observation that soil stability increases with the incor-
poration of reinforcing fibers aligns with established
principles in geotechnical engineering. This consisten-
cy in results reinforces the effectiveness of fiber rein-
forcement techniques in enhancing soil stability, as
demonstrated by both our study and others in the field.
Furthermore, the intriguing aspect of our research lies
in the comparative analysis of different fiber types. Our
data supports the notion that PP fiber reinforcement
outperforms natural plant fibers (Alfa, jute, sisal) in
terms of stabilizing soil, a finding that is consistent
with certain previous investigations. However, our
study also introduces a novel dimension by highlight-
ing the role of soil type. Despite the inherent expan-
siveness of clay soil in comparison to marl, our results
show that clay soil can achieve superior stability when
subjected to similar fiber reinforcement techniques.
This insight contributes valuable information to the
existing body of knowledge in geotechnical engineer-
ing, emphasizing the importance of considering soil
type as a critical factor in soil improvement strategies.

Effect of compaction energy on the evolution of swell
and swelling pressure in expansive soil behavior

The observed increase in both swell and swelling
pressure with rising compaction energy can be attributed
to the inherent expansiveness of the soil under investiga-
tion. Expansive soils tend to exhibit greater volume
changes in response to changes in moisture content, and

this behavior is often exacerbated with increased com-
paction energy. As compaction energy rises, the soil
particles are subjected to higher levels of compaction
and densification. Paradoxically, this densification can
lead to increased swell and swelling pressure in expan-
sive soils due to reduced void space for water to occupy.
In essence, while compaction energy aims to reduce soil
voids, it can also lead to more significant internal pres-
sures and subsequent soil expansion. This phenomenon
underscores the complex interplay between soil proper-
ties, moisture content, and compaction efforts in the be-
havior of expansive soils, a critical consideration in ge-
otechnical engineering and construction projects.

The effect of compaction energy on the evolution of
swell and swelling pressure in our study remained con-
sistently aligned with established principles, regardless
of the presence of reinforcement materials such as
plant fibers and PP combined with LPC. In both the
clay and marl soil samples, we observed a systematic
reduction in swell and swelling pressure as compaction
energy increased. This reduction was particularly
noteworthy in the reinforced samples, where the addi-
tional incorporation of plant fibers or the PP+LPC mix-
ture contributed to even greater stability as seen in
Fig. 6. These results echo the well-documented influ-
ence of compaction energy on soil density and the con-
sequent mitigation of soil expansion. Importantly, our
study underscores the beneficial role of reinforcement
materials in further enhancing soil stability, demon-
strating their compatibility with the fundamental prin-
ciples governing soil behavior.
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Fig. 6.
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Effect of compaction energy on swell characteristics in expansive soils samples: (a) swell (%); (b) swelling pressure
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Our research results, which show an increase in
both swell and swelling pressure with rising compac-
tion energy in expansive soils, align with several prior
scientific studies that have investigated the behavior of
expansive soils under compaction. These findings are
consistent with established principles in geotechnical
engineering and soil mechanics. Another study [47]
has reported similar trends, emphasizing that the densi-
fication of expansive soils through higher compaction
energy often leads to increased internal pressures and,
consequently, greater soil expansion. Moreover, the
relationship between compaction energy and soil be-
havior in expansive soils has been a subject of interest
in geotechnical research for several decades. Studies
have explored various factors influencing this relation-
ship, such as soil composition, moisture content, and
the type of compaction equipment used. Our results
bolster the existing body of knowledge by reaffirming
the importance of understanding and managing soil
expansion in expansive soil environments. While the
increase in swell and swelling pressure with compac-
tion energy may seem counterintuitive at first glance, it
underscores the intricate nature of expansive soils.
These soils possess unique characteristics that necessi-
tate a nuanced approach to engineering and construc-
tion projects. Therefore, our research contributes to the
broader conversation on how to effectively mitigate the
challenges posed by expansive soils, offering insights
that can inform best practices in geotechnical engineer-
ing and soil management.

Conclusion

In conclusion, this study has yielded valuable in-
sights into the intricate relationship between swelling
potential, soil stabilization methods, compaction ener-
gy, and maximum dry density, while considering vari-
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