Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2024. Vol. 335. No. 3. P. 192-203
Vu Hong Duong et al. Prediction of penetration rate and optimization of weight on a bit using artificial neural networks

UDC 622.24.08
DOI: 10.18799/24131830/2024/3/4376

Prediction of penetration rate and optimization
of weight on a bit using artificial neural networks

Vu Hong Duong®, Nguyen Minh Hoa, Nguyen Tien Hung, Nguyen The Vinh

Hanoi University of Mining and Geology, Hanoi, Vietnam

*yuhongduong@humg.edu.vn

Abstract. Relevance. Achieving the greatest rate of penetration is the aim of every drilling engineer because it is one of the most
significant factors influencing drilling costs. However, a variety of drilling conditions could have an impact on rate of penetration,
complicating its forecast. Aim. To suggest a novel strategy to accurately predict rate of penetration and optimize drilling
parameters. Objects. Real-time drilling data of a few wells in the Ca Tam oil field, Vietham, with more than 900 datasets
including significant parameters like rotary speed, weight on bit, standpipe pressure, flow rate, weight of mud, torque. Methods.
Various methods using Artificial Neural Network was proposed to estimate rate of penetration. Results. The number of neurons
in a hidden layer was varied then the results of different Artificial Neural Network models were compared in order to obtain the
optimal model. The final Artificial Neural Network model shows high exactness when contrasted with actual rate of penetration,
in this manner, it tends to be suggested as a successful and reasonable approach to predict the rate of penetration of different
wells in the Ca Tam oil field. Based on the proposed Artificial Neural Network model, the optimal weight on bit was determined
for the drilling interval from 1800 to 2300 m of oil wells in the research region.
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[IporHo3upoBaHU e MeXaHUYECKOW CKOPOCTH OypeHUs
U ONITUMHU3ALUSA HAarpy3KH Ha J,0JI0TO C UCN0JIb30BaHUEM
UCKYCCTBEHHBIX HEMPOHHBIX CceTeu
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AHHoTanus. AkmyaasHocmb. JJOCTIXKeHHE MaKCUMa/IbHOW MEXaHHUYECKOU CKOPOCTH GypeHHUs SBJISETCS LEeJbI0 KaXAoro
HMHXXeHepa-0ypoBHKa, TOCKOJIbKY MexaHH4ecKasl CKOPOCTb GypeHUs sIBJIsIeTCs O4HMUM U3 HauboJjiee BaXKHbIX GaKTOpPOB, BJIH-
SI0IIUX Ha 3aTpaThl Ha 6ypeHue. OfHAKO pas3jMYHbIe YCI0BUS GYpeHHs MOTYT OKas3aThb BJMSHHE Ha CKOPOCTb GypeHMUs,
YCI0XKHAS ee NporHo3. Llesblo vucciefoBaHus sBASETCA NpeJJloKeHre HOBOM CTpaTeruu JJjis TOYHOrO0 MPOrHO3MpPOBaHUSA
MeXaHU4YeCKOU CKOpPOCTU GYpeHMs M ONTUMH3ALUU NapaMeTpoB OypeHHs. 066€KMOM VCCIeJOBaHUs SIBJISIIOTCS JaHHbIE
OypeHHUs B peaJbHOM BpeMeHHM HeCKOJIbKHMX CKBaXXMH Ha HePTSIHOM MecTopoxzaeHuUH Besnyra B KelysoHrckom 6Gacceline
mesbda I0xxHoro BreTHama c 6osiee yeM 900 HaGopaMu JaHHBIX, BKJII0Yasl BaXKHbIe TapaMeTphl, TAKHe KaK CKOPOCTb Bpa-
IeHHs], Harpy3Ka Ha /10JI0TO, JaBJIeHHe Ha CTOsIKe, IeOUT, BeC 6ypOBOT0 pacTBOpa, KPYTALIMHA MOMeHT. Memodsl. /111 oLeH-
KM MeXaHHYeCKOM CKOpoCcTH OypeHHs ObliIa NpeAJoKeHa pas3/IMyHas MeTOJO0JIOTHs], HCIOJb3ylolas HCKYCCTBEHHYIO

192



M3BecTust TOMCKOro NoJIMTEXHUYECKOT0 YHUBepcuTeTa. UHXKMHUPUHT reopecypcoB. 2024. T. 335. Ne 3. C. 192-203
By XoHr 3bloHT ¥ Ap. [IporHo3upoBaHie MeXaHUUECKOW CKOPOCTU GYpeHHUs U ONITUMH3ALMs Harpy3KHy Ha J0JIOTO C ...

HEHPOHHYIO ceTb. Pe3ysiemamsl. KosinyecTBO HEPOHOB B CKPBITOM CJI0€ BapbUPOBAJIOCH, NOC/E YET0 CPAaBHUBAJIMUCH pe-
3yJIbTaThl PA3HBIX MOJeJIel UCKYCCTBEHHOW HEUPOHHOM CETH C LIeJIbI0 MOJyYeHHUs ONTUMaIbHOU Moze . OKOHYaTeIbHas
MOJieJib UCKYCCTBEHHOU HEHPOHHOM CeTH MOKa3bIBAeT BbICOKYI0 TOYHOCTb M0 CPAaBHEHUIO C GAKTHYECKON MeXaHUYeCKOH
CKOPOCTbIO OYpeHHs], IO3TOMY ee MOXKHO pacCMaTPHUBAaTh KaK YCNEUHbIA U Pa3yMHbIM N0AX0/, K IPOTHO3UPOBAHUIO MeXa-
HUYECKOH CKOPOCTH OypeHHUs Pa3/JMYHbIX CKBOXKHH Ha HedTAHOM MecTopoxaeHuM besyra. Takxke Ha OCHOBe NpeJI0XKeH-
HOM MOJieJIM MCKYCCTBEHHOH HEHPOHHOM ceTH OblJ ONpe/siesieH ONTHMAJIbHbIN PeXKUM Harpy3Kd Ha J0JI0TO /I UHTepBaJa
6ypeHnus ot 1800 no 2300 M B palioHe HCCIeI0BAHUS.

Kiao4deBble cioBa: ONITUMH3alUA TMapaMeTpoB 6ypeHI/IH, MeXaHH4YeCKasd CKOPOCTb 6ype1-ms{, HNCKYCCTBEHHas HeﬁpOHHaH
CeTb, MECTOPOXAEHHUE BeJIyFa

BaaropgapHocTH: Pa6oTa BbIoIHEHA NP NOepKKe XaHOMCKOr0 YHHBEPCUTETA FOPHOTO Jiesia U reoJIoTHH, T. XaHo#, ko T22-
14. ABTOpBI BEIPEKAKOT TJIy6OKYH0 6/1ar0JapHOCTb BCEM 32 M0JIe3HbIE KOMMEHTAaPHH, KOTOPbIe MOMOTJIU YJIyYIIUTh CTAThIO.
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Introduction

Achieving the greatest Rate of Penetration (ROP) is
the aim of every drilling engineer because it could save
time, diminish cost and limit drilling problems [1].
Nonetheless, ROP could be affected by many drilling
parameters which lead to complication in its prediction.
There have been many studies propose mathematical
relationships between various drilling parameters and
ROP. In 1962, W.C. Maurer proposed an equation for
roller-cone bits that predicts ROP assuming that the
bottom hole is perfectly cleaned [2]. Galle et al. [3]
developed a method using graphs and diagrams to
determine the optimal combination of weight on bit
(WOB) and rotation per minute (RPM) for roller cone
bits, while Bingham modified Maurer's model with a
simple experimental model that only considers low
WOB and RPM, but doesn't account for drilling depth
[4]. Bourgoyne and Young created an empirical model
to predict ROP based on multiple drilling parameters,
which has become a widely used approach for real-
time optimization of drilling parameters [5]. Warren
presented a perfect cleaning ROP model for soft
formations that relates ROP to WOB, RPM, and bit
size. Later, he added a wear function to reflect the bit
wear impact [6]. Al-Betairi et al. proposed a new ROP
model that uses controllable and uncontrollable drilling
variables to predict the optimum penetration rate,
evaluated the sensitivity of each parameter on ROP,
and determined correlational coefficients through
multiple regression analysis [7]. However, these
predict equations normally proposed from limited
database in particular research area. Therefore, when
applying them to other case, which has different
geological properties, the result is normally inaccurate.
Subsequently, it is essential and critical to propose a
new approach to predict ROP with high accuracy.
Because of the intricacy of the relationship between
ROP and drilling parameters, artificial neural network
(ANN) is by all accounts a reasonable choice to

demonstrate this complicated interaction. Some ANN
models were proposed to predict ROP from drilling
data [8-16]. These authors discuss the application of
various artificial intelligence (Al) techniques such as
ANN:Ss, support vector regression (SVR), decision trees
(DT), and machine learning (ML) in predicting the rate
of penetration during drilling operations. They
compare the performance of these models against
traditional empirical models and evaluate their
accuracy using statistical measures such as mean
absolute error (MAE), root mean square error (RMSE),
and determination coefficient (R?). These articles
demonstrate the potential of Al techniques to improve
drilling efficiency and reduce costs in the petroleum
industry. However, most of these published articles just
present ANN models without providing specific
equations to predict ROP.

In this study, authors apply ANN method with real
time drilling data to generate a specific ANN model
and calculation to predict ROP.

Input data

The Ca Tam field is located at block 09-3/12 of the
Cuu Long basin, Vietnam, about 160 km to the
southeast of Vung Tau city (Fig. 1). The block covers
an area of approximately 6,000 km”, with water depths
ranging from 15 to 60 m. The field is being developed
by a consortium comprising Vietsovpetro (55%), a
joint venture between Vietnam Oil & Gas Group
(PetroVietnam) and Zarubezhneft, PetroVietnam
Exploration Production (PVEP, 30%) and Bitexco
Group (15%).

When drilling through the Miocene strata, wells
frequently encounter numerous difficulties and issues
connected to borehole instability. It is as a result of the
long-term open-hole conditions of wells and the high
clay content of the rock (Table 1 summarizes the
stratigraphic description of three study wells).
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Fig. 1. Red rectangle shows the study area
Puc. 1. KpacHblll npamoy204bHUK hoKa3bleaem patioHa Ucca1e008aHuUs
Table 1. Stratigraphic description of three study wells

Ta6auya 1. Cmpamuzpaguueckoe onucaHue mpex U3y4aembvlx CKBAHCUH

Well/CkBaxkuHa

A

B

C

Middle Miocene: 1707.0-1985.0 mMD
(1584.3-1833.5 mTVD)

Cpeznnuii Muonesn: 1707.0-1985.0 m
(rsty6uHa o cTBOJIy)
1584.3-1833.5 M

(McTrHHas ray6GUHa 0 BEPTHKAJIH)

Formation
Popmanus

Middle Miocene (N12): (1992.0-2511.0 mMD)
(1595.2-1933.15 mTVD)

Cpeznnuit Muonen: 1992.0-2511.0 m
(rny6uHa 1o cTBOJIy)

1595.2-1933.15 M

(McTrHHas ray6rHa 0 BePTHKAJIH)

Middle Miocene: 2156- 2654 mMD
(1595-1882.33 mTVD)

Cpennuii Muonen: 2156- 2654 m
(rsiy6uHa 1o cTBOJIy)
1595-1882.33 M

(McTrHHas ray6GuHa 0 BEPTHKAJIH)

1722-1800 m: Predominantly sand
and clay.

Clay: brownish gray, brown, reddish
brown, soft.

Sand: greenish gray, transparent to
translucent, fine to coarse,
commonly medium grains, poorly
sorted, sub-angular to sub-rounded.
1800-1985 m: Predominantly
sandstone and claystone.

Claystone: gray, brownish gray, light
gray, light brownish gray brown,
reddish brown, soft, soft to firm.
Sandstone: greenish gray, light gray,
transparent to translucent, fine to
coarse, commonly very coarse
grains, poorly sorted, sub-angular to
sub-rounded.

Description
OnucaHue

1992-2100 m: Predominantly clay and sand.
Clay: brownish gray, brown, reddish brown,
soft, washable.

Sand: light gray, light greenish gray,

transparent to translucent, fine to coarse grains,

common medium grains, subangular to
subrounded, poorly sorted.

2100-2410 m: Predominantly clay and sand.
Clay: brown, light brown, brownish gray, light
gray, soft, and washable.

Sand: light gray, greenish gray, occasionally

light reddish brown, transparent to translucent,

fine to coarse grains, common medium grains,
subangular to subrounded, poorly sorted.
2410-2480 m: Predominantly clay and sand.
Clay: greenish gray, light gray, soft, washable.
Sand: light gray, greenish gray, occasionally

light reddish brown, transparent to translucent,

fine to coarse grains, common medium grains,
subangular to subrounded, poorly sorted.
2480-2511 m: Predominantly clay, sand,
claystone and sandstone.

Clay: greenish gray, light gray, soft, soluble in
part.

Sand: light gray, greenish gray, occasionally

light reddish brown, transparent to translucent,

fine to coarse grains, common medium grains,
subangular to subrounded, poorly sorted.

2156-2200 m: Predominantly clay, sand.
Clay: grayish green, light brown, soft,
subblocky.

Sand: transparent to translucent, light gray
to gray, greenish gray, medium to coarse,
commonly coarse grained, subangular to
subrounded, poorly sorted.

2200-2300 m: Predominantly clay, sand.
Clay: moderate brown, light gray to gray,
greenish gray, soft, subblocky.

Sand: transparent to translucent, light gray
to gray, greenish gray, fine to medium
grained, subangular to subrounded,
moderately sorted.

2300- 2400 m: Predominantly clay, sand.
Clay: light gray, moderate brown, gray,
greenish gray, soft, subblocky.

Sand: transparent to translucent, light gray
to gray, greenish gray, fine to medium
grained, subangular to subrounded,
moderately sorted. Trace of coal.

2400- 2650 m: Predominantly clay, sand.
Clay: moderate brown, light gray to gray,
greenish gray, soft, subblocky.

Sand: transparent to translucent, light gray,
greenish gray, fine to medium grained,
subangular to subrounded, moderately
sorted.
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Fig. 2. WOB and ROP changing trend of three wells: a) WOB data; b) ROP data

Puc. 2. TeHndeHyus usmeHeHus Ha2py3Ku Ha dos1omo (a) u mexaHu4eckoll ckopocmu 6ypeHust (b) no mpem ckeaxcuHam

It can be seen from Fig. 2 that:

e ROP is unpredictable and changes quickly;

e due to the different WOB used, there is a
considerable variance in ROP between three wells,
indicating that WOB is one of the most sensitive
parameters that affect ROP;

e despite the fact that the obtained ROP in well C is
significantly higher than that of other wells, the
adjustment range of WOB is quite broad and defies
all laws;

e although high achieved ROP was maintained when
applying increased WOB, it would raise the cost of
destruction energy and shorten bit life.

The best rate ROP must be established in order to
avoid drilling issues and save time for wells in the Ca
Tam area. The authors present an ANN model to predict
ROP from real data of three wells in a research oil field
with more than 1220 datasets that include significant
parameters like RPM, WOB, standpipe pressure (SPP),
flow rate (FR), and torque (TQ) (Table 2).

Data preprocessing
Outlier detection and removal

Abnormal data might be regarded as noise as they
can harm the ANN model and limit model
generalization. The Z-score outlier identification
technique examines the dataset of three wells for
aberrant results [17]. The supplied data was stripped of
any outlier data points. The participant is awarded a
score based on their performance, which is known as
the Z-score:

_ Xi = Xmean

~ SD

where X,,..., i1s the mean value of the data; SD is the
standard deviation of the data.

The following agreements were made as z<2 imply the
outcome is satisfactory in order to make the interpretation
of the z-scores simpler. 2<z<3 implies that the outcome is
uncertain. z>3 denotes an undesirable outcome.

The input data was further examined and smoothed
using the Butterworth filter in order to decrease
volatility and eliminate statistical noise [18].

VA
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Table 2. Well-log data
Ta6auya 2. /laHHble NO CKBAXCUHAM
Parameters/IlapameTpbl A Well/CgBamnHa C
Number of core/KosndyecTBo npo6 201 520 499
TVD (m) Top/KpoBas 1594.1 1595.04 1595.77
BepTuka/bHas riy6uHa 3a605 (M) Bottom/IlosomBa 1833.5 1933.23 1882.33
Min/MuHuMyM 78.47 73.84 83.26
Mexaﬂnqecig;c(}lcr(l){)}:)?m 6ypeHUst Max/Maxkcumym 14.29 1512 2241
(M/4) Mean/CpesiHee 35.52 53.25 65.15
Stdev/CTaHzfapTHOE OTKJIOHEHHE 11.91 10.57 10.65
Min/MuHUMYyM 8.4 5.9 9.99
WOB (ton) Max/MakcuMyM 0.2 0.2 1.01
Harpyska Ha goJsioTo (T) Mean/CpezHee 2.2 2.66 7.85
Stdev/CTaHapTHOe OTKJIOHEHHE 1.9 1.05 1.86
Min/MuHHMYM 130 130 193
RPM (revs/mn) Max/MakcumMyM 60 79 49
06opoThl B MUHYTY (06/MHH.) Mean/CpesHee 115.25 116.02 139.89
Stdev/CTanapTHOE OTKJIOHEHHE 17.57 11.45 16.94
Min/MuHUMyM 2782.56 3474.12 4074.78
TQ (kg/m) Max/MakcuMyM 2014.5 2554.08 3057.02
KpyTaumui MoMeHT (Kr/M) Mean/CpesiHee 2329.67 2969.34 3635.3
Stdev/CTaHapTHOe OTKJIOHEHHE 118.87 230.02 252.43
Min/MuHUMYyM 57.07 58.83 60.31
FR (1/s) Max/MakcuMyM 46.79 44.33 23.12
Je6ur (1/c) Mean/CpezHee 56.3 58.32 57.86
Stdev/CtaHzapTHOE OTKJIOHEHHUE 2.26 1.29 4.11
Min/MuHuUMyM 110.1 112.92 180.1
SPP (atm) Max/Makcumym 72.31 75.04 61.2
JlaB/ieHMe B cTOsIKe (aTM) Mean/CpesiHee 98.69 102.42 158.6
Stdev/CraHiapTHOE OTKJIOHEHHE 7.04 6.71 18.48

Data selection

The accuracy of the ANN model is largely dependent
on the input parameters chosen for the training phase.
The inter-relationships between parameters were looked
into in order to choose, which parameter should be used
as input data (Fig. 3). A regression coefficient that is
closer to 1 indicates a positive correlation between
parameters, whereas one that is closer to —1 indicates a
negative correlation. Fig. 3 demonstrates that all drilling
parameters are appropriate and can be kept when
creating an ANN model.

Data normalization

The scales used for various drilling parameters vary
greatly, which can have a significant impact on the
model accuracy. It is necessary as normalization
eliminates geometrical biases against specific data
vector dimensions. Every piece of data is handled
fairly in this way. As a result, writers normalize the
input data using the following equation:

(X - Xmin)

Xmax - Xmin

Xnormalize - )

where X,maiize 15 the normalized value; X is the input
data; X, 1S the minimum value of raw variable; X,y 1S
the maximum value of raw variable.

Model development

In this paper, to forecast ROP from drilling
parameters, the authors suggest an ANN using a back-
propagation training approach (BPNN) and a log-
sigmoid activation function [19]. In the Ca Tam oil
field, a training data set of 1220 samples from three
wells is divided into three sets: 70% of the samples are
used to train the network, 15% are used for testing, and
15% are used for validation. The ANN model output
value is the ROP value, and its five parameters —-WOB,
RPM, TQ, FR and SPP — are taken into consideration
as input data (Fig. 4).

To identify the mistake, the calculated output from
the ANN after a cycle (or iteration) is contrasted with
the real output provided in the sample dataset (actual
ROP). In order for output neurons and hidden neurons
to modify their weights, this error is communicated
back to them. The mistake is propagated in both
directions repeatedly, either until it falls below a
predefined minimum or until the number of loops hits a
predetermined threshold (Fig. 5). The RMS difference
between the ANN model projected ROP and the actual
ROP is a measure of the model accuracy:

2
(Roppredict - Ropactual)
n .

RMSETT'OT = \/Z
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Fig. 3.  Cross-plot between drilling parameters from database
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There is no set formula for calculating the number
of neurons in the hidden layer, making it a difficult
stage in model construction. In this work, various
scenarios with varying numbers of neurons in the
hidden layer were run along with tests for their impact
on the final prediction in order to establish the ideal
number of hidden neurons (Table 3). It is crucial to
remember that the hidden layer neuron count should be
carefully set because too many neurons there can cause
overfitting, which reduces the network generalization.

Table 3. Result of using different number of neurons in

hidden layer

Ta6auya 3. Pesysabmam UCNno/1b308aHUsl pazHo20 KoJu4de-
cmea HetlpoHO8 8 CKPbIMOM c/10e

Input Layer € R® Hidden Layer e R ™ Output Layer e R'
Fig. 4. ANN model to predict ROP
Puc. 4. Modeav UHC 0451 np02HO3UpPOBAHUSI MEXAHUYECKOL

ckopocmu GypeHus

Forward Propagation
and divided data into
3 set: 70% training;
15% validation; 15%

: leslinﬁ :

RMS o0

—

Backward
Propagation

—

Calculating Weighs
change and update

a 3
Calculate Error Update Weights
on Training
\ J
Pattern t
No "
Hroe < Sum all Weight
allowable Chiisiiss
value? 2
. v

Final Weights

Fig. 5. ANN model flow chart
Puc. 5. Baok-cxema modeau UHC

Number of neural in | Data training |Data validation
hidden layer 06yuyeHue [TpoBepku T Data test

KosnuyecTBO Helipo- JIAaHHBIX JIAHHBIX €CTHpOBAHHE

HOB B CKpbITOM cJjloe | R? RMSE R? RMSE R? RMSE
5 0.965 | 0.0026 | 0.969 [0.0024[0.928]0.0041
6 0.957 | 0.0034 | 0.949 [0.0032[0.922]0.0039
7 0.961 | 0.0029 | 0.959 [0.0028(0.963|0.0029
8 0.972 | 0.003 | 0.962 [0.0025|0.961]0.0031
9 0.923 | 0.0042 | 0.89 [0.0042|0.898]0.0045
10 0.983 | 0.0017 | 0.975 [0.0021{0.972]0.0026
11 0.981 | 0.0018 {0.9715[0.0023[0.967 | 0.0027
12 0.98 |0.0018 | 0.962 |0.00260.9720.0025
13 0.979 {0.0016 | 0.962 [0.0027|0.958]0.0031
14 0.981 | 0.0018 | 0.973 [0.0021{0.969]0.0028
15 0.976 1 0.0016 | 0.966 [0.0026|0.944]0.0036

The authors found that a model with 10 neurons in
the hidden layer is best for predicting ROP of the
investigated wells by comparing the correlation
coefficient (R*) and RMSE between these models
(Table 3).

Results and discussions

In order to prove the efficacy of the proposed ANN
model, the authors used Multivariate regression
method to generate equations to predict ROP from
drilling parameters then compare the results of two
models (Fig. 6).

ROP=a,;WOB+a,RPM+a;TQ+a,FR+asSPP+b,

where a;, a», a3, a4, as and b are the empirical
parameters, which values are respectively: a;= —
1.15743; a,=0.178066; a5=0.019056; @4=0.351704;
as=0.064732; b=-50.1241.

When comparing accuracy of two models — ANN
and Multivariate Regression, it is observed from Fig. 6
that ROP prediction from the ANN model has better
match and follows the changing trend of actual ROP in
three wells. Therefore, the authors generated a new
equation to determine ROP from the proposed ANN
model with biases and weights of each neural (Table 4).
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Fig. 6. Comparing ROP prediction by ANN, multivariate regression and actual ROP in well: a) A; b) B; c) C
Puc. 6. C(CpasHeHue npozHo3a MexaHUu4eckol ckopocmu 6ypeHusi ¢ nomowwsio HHC, MHo2oMepHOU pezpeccuu u gpakmuyeckotl
MexaHuveckoll ckopocmu GypeHust 8 ckgaxcuHe: a) A; b) B; ¢) C
( P Determination of WOB optimal value
ROP=4, Lm_w +b,; In this section, the WOB is optimized to achieve the
=2(4X + . . . .
I+exp ™ best ROP for a particular formation with the aid of neural
ROP= network model and brute force algorithm. As an example,
the optimization is achieved by splitting formation in
) database, which spans from 1595 to 1933 m into 7 sections
5 . . .
_ ZW 2 1 l+s of each 50 m. The minimum and the maximum of WOB
" 2 (72(WOB~W“,1+RPM Mo+ J] 2> for every division is determined and used as reference
i=1 +TQW,; 3+ FRW,; 4+SPPW,; 5

I+exp

where A4,(w, i) is the vector of weight link the input
neurons and the hidden neurons; 4,(w», i) is the vector
of weight link the hidden neurons to the output
neurons; b is the bias vector for input layer; b, is the
bias vector for output layer; X is the input data.

limits. The brute force algorithm evaluates all the possible
value of WOB between the limits (from 1 to 10 tons) and
the ROP in each scenario is then projected using the
suggested ANN model. The optimal WOB is determined
based on two criteria: the mean value and standard
deviation of the predicted ROP because the objective of
this study is not only to find the optimal value of WOB to
achieve ROP max, but also to maintain a stable ROP
value throughout the drilling interval (Fig. 7).
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Table 4. ANN weights and layers bias
Ta6auya 4. Beca HHC u cmeujetue ca0e8
Hld(}en layer neuron Weight from the input neurons to the hidden neuron (W1) Bias of hidden layer (b:) | Bias of outputlayer (bz)
HelpoH ckpbITOro Bec 0T BXO/IHbIX HeHPOHOB K CKPHITOMY HefipoHy (W1) CMenieHne CKpbITOro CMelieHne BBIXOJHOTO
ciiost P P y pory csiod (b1) ciiost (b2)
1 0.716160 -0.086680 | 1.011533 | -0.137673 |-2.989703 -0.805459
2 1.391110 0.549202 | 0.869311 |-0.857077 |-1.981862 -0.212758
3 0.757028 0.081891 | 0.549014 | 2.223974 |-0.353078 -0.970811
4 -0.107131 0.549205 |-2.865236 | -0.081505 | 2.628079 -1.009392
5 0.440916 -1.213588 |-0.707841 | 0.839954 |-2.058846 -0.734020 0.638699
6 -0.962696 0.885008 | 1.359589 |-0.459556 | 0.102182 -0.614032 ’
7 3.071694 -1.486080 | 0.018324 | 1.449299 |-1.835713 2467094
8 1.336814 1.212675 |-6.615816 | -2.594175 | 0.389015 1.523646
9 0.528138 -1.219627 | 1.560386 | 1.797248 |-0.443743 1.319486
10 0.476239 -1.711590 |-3.138083 | 1.854319 |-3.359954 2.284501
1845-1895 m TVD
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N Average e STDEV
Fig. 7. Example of ROP prediction by ANN when changing WOB value for the interval depth from 1845 to 1895 m
Puc. 7. [Ipumep npoeHo3upogaHusi MexaHu1eckoli ckopocmu 6ypexusi no UHC npu usmeHeHuu 3Ha4eHust Ha2py3Ku Ha 00.10mo

04151 uHmepea.a 2ay6utvsl ¢ 1845 do 1895 m

It can be seen from Fig. 7 that:

e When WOB increases from 1.2 to 4.4 tons, ROP
has an upward trend. Keep increasing WOB, ROP
is not only enhanced but also has a decreased trend.
It is consistent with the result of previous studies
when indentation depth increases, but hole cleaning
is not good enough [20-22]. Furthermore, it leads
to increasing cost of destruction energy and bit life
reduction.

e Furthermore, when applying WOB value of 4.4 tons,
the standard deviation was just 24.25 m/hr, which
means the predicted ROP, in this case, was
relatively stable through interval depth. Comparing
to the real data, it is seen that there is also an

increase in the mean value of ROP (24.48%).
Therefore, 4.4 tons can be considered as the optimal
value of WOB.

Following the same process for other sections, we
obtain the following optimal WOB values as it is
shown in Table 5.

Table 5 shows that ROP improves significantly
(from 14 to 26%) when the optimal WOB is applied to
the prediction model. Especially at the two-section
depth S6 and S7, the recommended optimal WOB is
even smaller than the actual WOB, although predicted
ROP rises by 24.48 and 14.54%, respectively. This
demonstrates that boosting WOB is not always a good
method to increase drilling efficiency.
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Table 5. Optimal WOB for drilling intervals Conclusions
Ta6auya 5. OnmumaavHass Hazpyska Ha 0040mMo OAS UH- This paper demonstrates the practical use of ANN

mepeasnos 6ypeHus to predict ROP from drilling parameters of wells in Ca

Tam oil field, Vietnam. The ANN model using back-
propagation training algorithm with 10 neurons in
hidden layer shows the ability to predict ROP
accurately.

The optimal value of WOB, when drilling through
Miocene stratigraphy for three study wells in Ca Tam
oil field, is from 3.6 to 4.4 tons (Table 5). This result
could be applied to other wells in the research region.

Furthermore, this method can be applied similarly

Drilling interval (TVD) m
WHTepBan 6ypeHus (M)
Optimal WOB (tons)
OnTuMHU3anus Harpy3sku
Ha J10J10TO (T)

Actual WOB (average) (tons)
dakTuyeckas Harpy3ka
Ha fos10To (cpen.) (T)
Predicted ROP when applying
optimal WOB (m/hr)
[IporHosupyemMasi CKOpOCTb
6ypeHUs PU ONTUMU3ALUU
HarpyskH Ha J{0J10To (M/4)
Actual ROP (m/hr)
dakTHveckas MexaHHU4YeCcKast
CKOpoCTb 6ypenus (M/4)
ROP change
U3MeHeHHe CKOPOCTH
Gypenusi (%)

S1:

1595-1645| 4 49 2455 | 1697 | for the optimization of other drilling parameters such

vl
N
uny
[y

S2:

1645-1695| 3.8 5.1 60.63 47.98 | 26.37 as RPM, FR, MW, etc.

S3:

1695-1745| 3.6 5.1 66.36 551 | 2044 Recommendation for future work is to update data

S4:

S5:

1745-1795 3.6 4.72 71.19 58.29 22.13 fi 113
rom n 11 11 n her drillin
1795-1845 3.4 4.73 75.12 63.82 17.71 0 ew wells, collect data o other d g

S6:

18451895 | 4.4 422 70.78 6409 | 244 | Parameters and integrate the geomechanical properties

S7:

1895-1933| 4 3.69 66.47 58.03 | 1454 | into the ANN model to increase the accuracy.
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