Diagnostic potential for detecting upper limb arthropathy in ischemic stroke patients with RRS score of 4–6 points

Cover Page

Cite item

Full Text

Abstract

Aim – to identify the features of the formation of upper limb arthropathy in patients with ischemic stroke with 4-6 points on the rehabilitation routing scale (RRS) depending on the type of treatment and rehabilitation procedures.

Material and methods. Ninety-eight patients with ischemic stroke were examined in two periods: Period 1, 13.2 ± 0.8 days and Period 2, 189.2 ± 2.1 days. Ultrasound and X-ray examinations were performed to determine the nature of damage to the joint complex of the upper limb. The severity of the neurosomatic status was assessed using the NIHSS, MRS, MMSE, VAS, and RRS scales.

Results. Post-stroke hemiparesis in the acute period of ischemic stroke was registered in 86 patients (88%), and upper limb arthropathy in 36 (37%) of the examined patients. In 12 (32%) patients with ischemic stroke the arthropathy of the shoulder joint combined with damage to other joints. In the majority of patients with ischemic stroke with arthropathy, according to the ultrasound data of the joints, synovitis was detected in 27 (76%), and tendon tendinitis in 17 (47%) that form the structure of the shoulder joint. In dynamics, contracture of the upper limb was revealed in 12 (26%) of the examined and was combined with a more pronounced cognitive defect, which required development of preventive and corrective methods.

Conclusion. It is proposed to introduce into the diagnostic standard of patients with ischemic stroke with paresis of 0-3 points ultrasound of the affected joint to identify early markers of arthropathy in order to promptly prevent contracture of the upper limb.

About the authors

Lesya V. Chichanovskaya

Tver State Medical University

Email: nevrotver@mail.ru
ORCID iD: 0000-0002-3808-4866

MD, Dr. Sci. (Medicine), Professor, Head of the Department of Neurology, Rehabilitation and Neurosurgery

Russian Federation, Tver

Olga N. Bakhareva

Tver State Medical University

Author for correspondence.
Email: bakharevaon@tvgmu.ru
ORCID iD: 0000-0003-0442-4524

MD, Cand. Sci. (Medicine), Associate Professor of the Department of Neurology, Rehabilitation and Neurosurgery

Russian Federation, Tver

Denis V. Ganza

Tver State Medical University

Email: denisganzya@mail.ru
ORCID iD: 0000-0002-3376-6585

MD, Assistant of the Department of Neurology, Rehabilitation and Neurosurgery

Russian Federation, Tver

Tatyana V. Menshikova

Tver State Medical University

Email: menshikovatv@tvgmu.ru
ORCID iD: 0000-0003-2645-3596

MD, Cand. Sci. (Medicine), Associate Professor of the Department of Neurology, Rehabilitation and Neurosurgery

Russian Federation, Tver

References

  1. Lyukmanov RKh, Rimkevichus AA, Gnedovskaya EV, Suponeva NA. Poststroke shoulder arthropathy. Effective Pharmacotherapy. 2023;19(3):52-58. [Люкманов Р.Х., Римкевичус А.А., Гнедовская Е.В., Супонева Н.А. Постинсультная плечевая артропатия. Эффективная фармакотерапия. 2023;19(3):52-58]. doi: 10.33978/2307-3586-2023-19-3-52-58
  2. Kozlova NS. Post-stroke periarthropathy of shoulder joint: epidemiology, pathogenesis, clinical performance, diagnostics, possible treatment options. Russian Osteopathic Journal. 2018;3-4:119-127. [Козлова Н.С. Постинсультная периартропатия плечевого сустава: эпидемиология, патогенез, клиническая картина, диагностика, возможные варианты лечения. Российский остеопатический журнал. 2018;3-4:119-127]. doi: 10.32885/2220-0975-2018-3-4-119-127
  3. Kalichman L, Ratmansky M. Underlying pathology and associated factors of hemiplegic shoulder pain. Am J Phys Med Rehabil. 2011;90(9):768-780. doi: 10.1097/PHM.0b013e318214e976
  4. Roosink M, Renzenbrink GJ, Buitenweg JR, et al. Somatosensory symptoms and signs and conditioned pain modulation in chronic post-stroke shoulder pain. The journal of pain. 2011;12(4):476-485. doi: 10.1016/j.jpain.2010.10.009
  5. Kotelnikova AV, Pogonchenkova IV, Titova AV, et al. Approbation of the Methodology “Scale for Cognitive Status Assessment of the After-Stroke Patients with Speech Disorders”. Bulletin of Rehabilitation Medicine. 2024;23(6):26-37. [Котельникова А.В., Погонченкова И.В., Титова А.В., и др. Апробация методики «Шкала оценки когнитивного статуса пациентов после перенесенного инсульта с учетом нарушений речи». Вестник восстановительной медицины. 2024;23(6):26-37]. doi: 10.38025/2078-1962-2024-23-6-26-37
  6. Kostenko EV, Petrova LV, Nahrapov DI, Pogonchenkova IV. Effect of rehabilitation interventions on poststroke upper limb dysfunction and cognitive functions: a systematic review and meta-analysis. Bulletin of Rehabilitation Medicine. 2023;22(1):69-79. [Костенко Е.В., Петрова Л.В., Нахрапов Д.И., Погонченкова И.В. Влияние реабилитационных вмешательств на постинсультную дисфункцию верхней конечности и когнитивные функции: систематический обзор и метаанализ. Вестник восстановительной медицины. 2023;22(1):69-79]. doi: 10.38025/2078-1962-2023-22-1-69-79
  7. Meyer S, Karttunen AH, Thijs V, et al. How do somatosensory deficits in the arm and hand relate to upper limb impairment, activity, and participation problems after stroke? A systematic review. Physical Therapy. 2014;94(9):1220-31. doi: 10.2522/ptj.20130271
  8. Munthe-Kaas R, Aam S, Ihle-Hansen H, et al. Impact of different methods defining post-stroke neurocognitive disorder: The Nor-COAST study. Alzheimers Dement. 2020;6:e12000. doi: 10.1002/trc2.12000
  9. Auriat AM, Ferris JK, Peters S, et al. The impact of covert lacunar infarcts and white matter Hyperintensities on cognitive and motor outcomes after stroke. Journal of Stroke & Cerebrovascular Diseases. 2019;28(2):381-388. doi: 10.1016/j.jstrokecerebrovasdis.2018.10.009
  10. Chhetri JK, Chan P, Vellas B, Cesari M. Motoric cognitive risk syndrome: predictor of dementia and age-related negative outcomes. Frontiers in Medicine. 2017;4:166. doi: 10.3389/fmed.2017.00166
  11. McDonnel M, Koblar S, Ward NS, et al. An investigation of cortical neuroplasticity following stroke in adults: is there evidence for a critical window for rehabilitation. BMC Neurology. 2015;15:109. doi: 10.1186/s12883-015-0356-7
  12. Hesseberg K, Tangen GG, Pripp AH, et al. Associations between Cognition and Hand Function in Older People Diagnosed with Mild Cognitive Impairment or Dementia. Dementia and Geriatric Cognitive Disorders Extra. 2020;10:195-204. doi: 10.1159/000510382
  13. Han P, Zhang W, Kang L, et al. Clinical Evidence of Exercise Benefits for Stroke. Advances in Experimental Medicine and Biology. 2017;1000:131-151. doi: 10.1007/978-981-10-4304-8
  14. Taravati S, Capaci K, Uzumcugil H, Tanigor G. Evaluation of an upper limb robotic rehabilitation program on motor functions, quality of life, cognition, and emotional status in patients with stroke: a randomized controlled study. Neurological Sciences. 2022;43(2):1177-1188. doi: 10.1007/s10072-021-05431-8
  15. Park J, Lee SU, Jung SH. Prediction of post-stroke functional mobility from the initial assessment of cognitive function. NeuroRehabilitation. 2017;41(1):169-177. doi: 10.3233/NRE-171469
  16. Grishina DA, Zakharov VV. Stroke and cognitive impairment. Effective Pharmacotherapy. 2019;15(19):16-23. [Гришина Д.А., Захаров В.В. Инсульт и когнитивные нарушения. Эффективная фармакотерапия. 2019;15(19):16-23]. doi: 10.33978/2307-3586-2019-15-19-16-23

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure 1. The structure of paresis on the MRS scale.

Download (41KB)
3. Figure 2. Structure of paresis severity on the MRS scale in stroke patients with arthropathy.

Download (31KB)
4. Figure 3. The structure of the routing scale in stroke patients with upper limb arthropathy, %.

Download (730KB)

Copyright (c) 2025 Chichanovskaya L.V., Bakhareva O.N., Ganza D.V., Menshikova T.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».