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ABSTRACT Two promising designs of counterflow vortex reactor were numerically investigated. Such
apparatus utilizes reverse flow to withdraw thermal energy and products from interelectrode area. Complex
gasdynamic structure of the water-vapor flow was investigated using turbulent three-dimensional simulation
employing Reynolds averaged Navier-Stokes equations along with SST k —w turbulence model — technique
tested in earlier papers. Presented velocity profiles and heat flux reports demonstrate viability of both
approaches.
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Introduction

The quest for environmentally friendly energy sources continues and requires development of new solutions
and apparatuses. In [1], a group from JIHT proposed vortex-based approach and described plasma-vortex
reactor (PVR) — the promising technology capable of simultaneous generation of heat and hydrogen. Such
machine exploits swirling flow to hold away hot gas from the walls of the system inside the active area.
Experimental and theoretical research into PVR provided several insights about performance of device [2—4].
It can be anticipated that the efficiency depends not distinguishably on the parameters of electric discharge
or the structure of the swirling flow but on their complex interaction [5; 6]. From the geometrical point of
view there are several factors which can crucially affect the final outcome: the configuration of the working
mixture input and output and the design of the electrode system. This statement was tested in [7], which
confirmed using numerical simulation of the turbulent vortex flow for an experimental setup that formation
of recirculation zone, which eventually determines the direction and intensity of the energy stream, strongly
depend on the shape of the electrodes and their location relative to the swirler and the outlet.

The key feature of described system is that products from zone of active plasma-chemical reactions are
carried away with the direct flow. However, that is not the only possible conception. In present paper, we
propose results of numerical investigation into structure of the flow in alternative vortex reactor which utilizes
reverse flow to withdraw thermal energy and desired products.

1. Mathematical modelling

1.1. Numerical model geometry and governing equations

The geometries of the principal part of the device (swirler, tube, and electrodes) is sketched in figure
1 for two cases. The common features both variants share are the following. The swirler has 4 tangential
inlets (visible ones are colored in blue) of size in axial direction equal to 10 mm. The system of electrodes
consists of coaxial cylindrical cathode (colored in light blue) of 85 mm length and 23 mm diameter and
anode (yellow surface and orange base) — 112 mm and 12 mm respectively. There are 2 possible outlets.
The primary one is the red annular area at the tube face near the swirler with inner diameter equal to 23
mm and outer one to 30 mm. The secondary optional one is the base of anode (orange). The heat source,
which emulates heating in the discharge area, is located between electrodes. The length of the whole system
is 267 mm and diameter of the tube 56 mm. Uncolored surfaces are the walls. The difference between two
realizations lies in presence or absence of additional coaxial tube with inner diameter of 30 mm and wall
thickness of 1 mm which contours are depicted in green color.

Standard unsteady Reynolds averaged Navier-Stokes equations along with SST k& — w turbulence model,
which is well suited for similar system [5], were used to describe the water-vapor flow:
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stresses which must be modeled using chosen turbulence approach to close the set of equations, v;, v/, p, T, P, E
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Fig. 1. The geometry of the principal part of the device used for numerical simulation: ¢ — without bounding tube,
b — with bounding tube

Puc. 1. Teomerpusi rmaBHOI YacTw yCTPONCTBA, WCIOJb30BAHHAS JJIs YHUCJIEHHOTO MOJE/JMPOBAHUs: a — 0e3 OrpaHu-
qUBAIONIE TPYyOKM, 6 — C OrpaHUYIUBAIONIEN TPYOKOI

and h are the mean and fluctuating velocity components, density, temperature, pressure, total energy, and
enthalpy, respectively; N is the energy source which total power was set to 0 or 500 W, u, pis, ptess are the
molecular, turbulent, and effective viscosity coeflicients, respectively; c, is the molar specific heat capacity
at constant pressure; r is the thermal conductivity coefficient and Pr; is the turbulent Prandtl number.

The no-slip velocity and fixed temperature boundary conditions were used for solid surfaces. Mass flow
rate was set equal to 1 g/sec at every tangential inlet with gas temperature of 300 K. At the outlets, pressure
equal to standard atmosphere was set. Temperature at the walls was constant equal to 300 K.

1.2. Numerical procedure

The whole system of equations for the non-stationary 3D turbulent swirling flow was solved using the
ANSYS FLUENT 15.0 program package. A second-order upwind scheme was used for spatial discretization
of density, momentum, energy and turbulent variables. The higher-order scheme does not provide any
considerable change. The diffusion terms are central-differenced and second-order accurate. The pressure values
at the faces were interpolated using the PRESTO! scheme developed for the flows of strong swirl behavior.

Transient terms were discretized using the fully implicit scheme of the second-order accuracy. Different
pressure-velocity coupling schemes were tested and gave equal results. So, the SIMPLE scheme was chosen as
the least resource consuming. The convergence was obtained when the residual reached 10~° for the energy
equation and 10~* for the continuity equation, the momentum equation, and the equations for turbulent
quantities.

The computational grid consisted of about 2.6@®10° hexahedral cells. The skewness metric has an average
value of 0.15, the minimum value of orthogonal quality metric — 0.10, the mean one — 0.9. The time step
was fixed and set equal to 5@® 1075 sec in order to achieve convergence at every time step in recommended
by ANSYS manufacturer iterations.

2. Results of numerical simulation

Axial velocity profiles of interest are shown in Fig. 2 and 3. Limited velocity ranges are used in order
to make pictures more contrast and highlight areas of negative values. For both realizations, with (b) and
without (a) additional bounding tube, there is pronounced counterflow which can suck out hot gas and
reaction products from the interelectrode zone. However, absolute values of axial velocity in that area when
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only primary outlet is open are relatively low which could lead to overheating and exceeding limits or the
used model. In the case of open secondary outlet (Fig. 2), there is direct flow sufficient to keep temperatures
in computationally allowed range (Fig. 3).

Presence of the bounding tube results in two changes of the flow characteristics. The first one, visible
from the axial velocity profiles, is narrowing of the stagnation area between electrodes, which in the case of
one outlet leads even to two almost splitted zones. The second one is intensification of reverse flow squeezed
between the cathode and the bounding tube. When the secondary outlet is open, it leads to shift of heat
flux distribution in favor of primary outlet: from ~ 42% of thermal energy being carried away through it to
~ 67%. Moreover, there is significant decrease in maximum temperature (Fig. 4) which seems to be result
of both aforementioned effects.
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Fig. 2. The axial velocity distributions with (b) and without (@) the bounding tube. The secondary outlet is closed
Puc. 2. Pacnpegesnenust ocesbix ckopocreit ¢ (b) u 6e3 (a) orpanmuuparomieil TpyObl. BTopu4HBIA BBIXOJ 3aKpBIT
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Fig. 3. The axial velocity distributions with (b) and without (a) the bounding tube. The secondary outlet is open
Puc. 3. Pacnpenenenns ocesbix ckopocreil ¢ (b) u 6e3 (a) orpanmumsaromeit TpyObl. JONOMHATENbHBIH BBIXO,
OTKPBIT
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Fig. 4. The temperature distributions with (b) and without (a) the bounding tube. The secondary outlet is open
Puc. 4. Pacupenesnenusi remneparypsl ¢ (b) u 6e3 (a) orpanmumBaronieil TpyOku. JIOIOJHUTENBHBIA BBIXOL OTKPBIT

Conclusion

Results of modelling demonstrate viability of vortex reactor with reverse flow. Hot gas from interelectrode
area is carried away in both examined cases: closed and open outlet at the base of cylindrical anode.
Additional coaxial bounding tube which encircles the cathode significantly affects the flow characteristics.
Its presence leads to narrower interelectrode stagnation zone, redistribution of energy fluxes in favor of
primary outlet in the face of the whole cylindrical system and lower maximum temperature in the active zone
between electrodes. Still, there is a room for optimization. Possible parameters to explore include length of
both electrodes, radius and length of bounding tube. However, more experimental data are needed to select
criteria and range of search.
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CTPYKTVYPA 3AKPYYEHHOI'O TEYEHUNSA B ITPOTNBOTOYHOM
BUXPEBOM PEAKTOPE?

AHHOTAIINA

r‘II/ICJ'IeHHO UCCJICIOBAHDBI ABE TMEPCIEKTUBHLIEC KOHCTPYKIIUU TPOTUBOTOYHOTO BUXPEBOTO PEAKTODA. B TAKOM
aInmapare HCHOJIb3YeTCsS OOPATHBIM MMOTOK IS OTBOJA TEIJIOBON SHEPIUU UM IPOAYKTOB U3 MEXKIJIEKTPOIHOM
obnactu. CroXKHas Ta30[IMHAMAYECKAs CTPYKTypPa MAPOBOJSHOTO MOTOKA ObLIa WCCIEIOBAHA C IIOMOIIBHIO
TypOY/JIEHTHOTO TPEXMEPHOI0 MOJEJUPOBAHMUS C WCIIOJb30BAHMEM OCDEIHEHHBIX M0 PeifHoJbICcy ypaBHEHU
Hare — Crokca B coderanun ¢ momenbio TypbOymentaHoctu SST k — w — Meromukw, anpobUpOBaHHON B
npenpiymux paborax. [Ipemcrasienubie mpoduim CKOPOCTEH W PACIETHI TEIIOBBIX IOTOKOB JIEMOHCTPUPYIOT
KUBHECIIOCOOHOCTH ODOUX IIOIXOI0B.
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