Approximation of forces of fluid film bearing lubricating layer using machine learning methods

Cover Page

Cite item

Full Text

Abstract

The article analyzes the application of various machine learning methods for solving the problem of approximating the forces of fluid film bearing lubricating layer in static formulation. The initial data on the values of lubricating layer forces for different shaft positions were obtained using a model of a rotor-bearing system based on the numerical solution of the Reynolds equation, with account for the cavitation effect. Methods for reducing the amount of calculation required to obtain the necessary data set are determined on the basis of analyzing solution approximation accuracy with artificial neural networks. After that, approximation models were constructed using a number of other machine learning methods, and the accuracy of predictions as well as the duration of the training process were analyzed. Finally, conclusions were drawn about the most effective approaches to building such models.

About the authors

Yu. N. Kazakov

Orel State University named after I.S. Turgenev

Author for correspondence.
Email: KazakYurii@yandex.ru

Student

Russian Federation

I. N. Stebakov

Orel State University named after I.S. Turgenev

Email: chester50796@yandex.ru

Postgraduate Student of the Department of Mechatronics, Mechanics and Robotics

Russian Federation

D. V. Shutin

Orel State University named after I.S. Turgenev

Email: rover.ru@gmail.com

Candidate of Science (Engineering), Associate Professor, Department of Mechatronics, Mechanics and Robotics

Russian Federation

L. A. Savin

Orel State University named after I.S. Turgenev

Email: savin3257@mail.ru

Doctor of Science (Engineering), Professor, Department of Mechatronics, Mechanics and Robotics

Russian Federation

References

  1. Tala-Ighil N., Fillon M. A numerical investigation of both thermal and texturing surface effects on the journal bearings static characteristics. Tribology International. 2015. V. 90. P. 228-239. doi: 10.1016/J.TRIBOINT.2015.02.032
  2. Gropper D., Harvey T.J., Wang L. Numerical analysis and optimization of surface textures for a tilting pad thrust bearing. Tribology International. 2018. V. 124. P. 134-144. doi: 10.1016/J.TRIBOINT.2018.03.034
  3. Kumar V., Sharma S.C., Jain S.C. On the restrictor design parameter of hybrid journal bearing for optimum rotordynamic coefficients. Tribology International. 2006. V. 39, Iss. 4. P. 356-368. doi: 10.1016/J.TRIBOINT.2005.03.015
  4. Cui S., Zhang C., Fillon M., Gu L. Optimization performance of plain journal bearings with partial wall slip. Tribology International. 2020. V. 145. doi: 10.1016/J.TRIBOINT.2019.106137
  5. Kazakov Yu.N., Kornaev A.V., Shutin D.V., Li Sh., Savin L.A. Active fluid-film bearing with deep Q-network agent-based control system. Journal of Tribology. 2022. V. 144, Iss. 8. doi: 10.1115/1.4053776
  6. Breńkacz L., Witanowski L., Drosińska-Komor M., Szewczuk-Krypa N. Research and applications of active bearings: A state-of-the-art review. Mechanical Systems and Signal Processing. 2021. V. 151. doi: 10.1016/J.YMSSP.2020.107423
  7. Kornaev A.V., Kornaeva E.P., Savin L.A., Kazakov Yu.N., Fetisov A., Rodichev A.Yu., Mayorov S.V. Enhanced hydrodynamic lubrication of lightly loaded fluid-film bearings due to the viscosity wedge effect. Tribology International. 2021. V. 160. doi: 10.1016/J.TRIBOINT.2021.107027
  8. Peixoto T.F., Cavalca K.L. Thrust bearing coupling effects on the lateral dynamics of turbochargers. Tribology International. 2020. V. 145. doi: 10.1016/j.triboint.2020.106166
  9. Momoniat E. A Reynolds equation modelling Coriolis force effects on chemical mechanical polishing. International Journal of Non-Linear Mechanics. 2017. V. 92. P. 111-117. doi: 10.1016/j.ijnonlinmec.2017.04.003
  10. Iseli E., Schiffmann J. Prediction of the reaction forces of spiral-groove gas journal bearings by artificial neural network regression models. Journal of Computational Science. 2021. V. 48. doi: 10.1016/J.JOCS.2020.101256
  11. Chasalevris A., Dohnal F. Vibration quenching in a large scale rotor-bearing system using journal bearings with variable geometry. Journal of Sound and Vibration. 2014. V. 333, Iss. 7. P. 2087-2099. doi: 10.1016/j.jsv.2013.11.034
  12. Santos I.F. Controllable sliding bearings and controllable lubrication principles-an overview. Lubricants. 2018. V. 6, Iss. 1. doi: 10.3390/LUBRICANTS6010016
  13. Li S., Babin A., Shutin D., Kazakov Yu., Liu Y., Chen Zh., Savin L. Active hybrid journal bearings with lubrication control: Towards machine learning. Tribology International. 2022. V. 175. doi: 10.1016/J.TRIBOINT.2022.107805
  14. Almqvist A. Fundamentals of physics-informed neural networks applied to solve the reynolds boundary value problem. Lubricants. 2021. V. 9, Iss. 8. doi: 10.3390/LUBRICANTS9080082
  15. Kornaev A.V., Kornaev N.V., Kornaeva E.P., Savin L.A. Application of artificial neural networks to calculation of oil film reaction forces and dynamics of rotors on journal bearings. International Journal of Rotating Machinery. 2017. V. 2017. doi: 10.1155/2017/9196701
  16. Hori Y. Hydrodynamic lubrication. Tokyo: Springer-Verlag, 2006. 231 p. doi: 10.1007/4-431-27901-6
  17. Hu B., Zhou C., Wang H., Chen S. Nonlinear tribo-dynamic model and experimental verification of a spur gear drive under loss-of-lubrication condition. Mechanical Systems and Signal Processing. 2021. V. 153. doi: 10.1016/J.YMSSP.2020.107509
  18. Liu W., Zhao X., Zhang T., Feng K. Investigation on the rotordynamic performance of hybrid bump-metal mesh foil bearings rotor system. Mechanical Systems and Signal Processing. 2021. V. 147. doi: 10.1016/J.YMSSP.2020.107076
  19. Kornaeva E.P., Kornaev A.V., Kazakov Yu.N., Polyakov R.N. Application of artificial neural networks to diagnostics of fluid-film bearing lubrication. IOP Conference Series: Materials Science and Engineering. 2020. V. 734, Iss. 1. doi: 10.1088/1757-899X/734/1/012154
  20. Khebda M., Chinchinadze A.V. Spravochnik po tribotekhnike: v 3 t. T. 2. Smazochnye materialy, tekhnika smazki, opory skol'zheniya i kacheniya [Handbook on tribological engineering. V. 2. Lubricants, lubrication techniques, sliding and rolling bearings]. Moscow: Mashinostroenie Publ., 1990. 411 p.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 VESTNIK of Samara University. Aerospace and Mechanical Engineering

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».