Investigation of vibration modes for optically transparent components by using digital speckle interferometry and finite element method


Citar

Texto integral

Resumo

An experimental method for studying the natural vibration modes of the acting faces of large-sized optically-transparent components used in the imaging and interference systems in optical-electronic sets is proposed. Based on a noise-proof digital pattern speckle interferometer, an optical system was developed to provide the registration of the normal component of the vibration displacement vectors on the flat optical surface with the deposited diffusing coating. The optimal transmission of the coating was determined for recording the contrast speckle-interferograms. The vibration modes of the flat, diffusing element included in the digital speckle pattern interferometer are investigated in order to verify the results of numerical modeling of its vibrations at resonant frequencies. For natural vibration modes recorded in the range from 0 to 900 Hz, deviations between experimental and numerical results within 5…7% were found.

Sobre autores

A. Ivchenko

Samara National Research University

Email: fgrt@yandex.ru
ORCID ID: 0000-0003-2228-0835

Candidate of Science (Engineering), Associate Professor of the Engine Production Department

Rússia

A. Zhuzhukin

Samara National Research University

Email: cntkknio@yandex.ru
ORCID ID: 0009-0008-0005-0135

Candidate of Science (Engineering), Senior Scientist of the Research Institute of Machine Acoustics

Rússia

R. Sergeev

Samara National Research University

Email: romansr@yandex.ru
ORCID ID: 0000-0002-7157-316X

Engineer of the Research Institute of Machine Acoustics

Rússia

A. Safin

Samara National Research University

Autor responsável pela correspondência
Email: safin.ai@ssau.ru
ORCID ID: 0000-0003-0936-4364

Candidate of Science (Engineering), Associate Professor of the Department of Automatic Systems of Power Plants

Rússia

Bibliografia

  1. Zolotov A.A., Titov M.I. Obespechenie nadezhnosti transportnykh apparatov kosmicheskikh sistem [Reliability control for tugs of space systems]. Moscow: Mashinostroenie Publ., 1988. 215 p.
  2. Gishvarov A.S. Sovmeshchennye resursnye ispytaniya tekhnicheskikh sistem [Combined life cycle tests of technical systems]. Ufa: AN RB, Gilem Publ., 2002. 268 p.
  3. Kuznetsov N.D., Tseytlin V.I., Volkov V.I. Tekhnologicheskie metody povysheniya nadezhnosti: spravochnik [Technological methods for reliability improvement: Handbook]. Moscow: Mashinostroenie Publ., 1993. 304 p.
  4. Fedorchenko D.G., Kocherov E.P. Prochnostnaya dovodka i ustranenie osnovnykh defektov GTD [Strength development and elimination of the main defects of gas turbine engines]. Samara: Isakova T.S. (BIYuR) Publ., 2022. 431 p.
  5. Forrest P.G. Fatigue of metals. Paris: Pergamon Press, 1962. 436 p.
  6. Kryukov S.V. Vibrodiagnostika tekhnicheskogo sostoyaniya detaley GTD na osnove issledovaniya ikh sobstvennykh form kolebaniy. Dis. … kand. tekhn. nauk [Vibration diagnostics of the technical condition of gas turbine engine parts based on the study of their natural vibration modes. Thesis for a Candidate Degree in Science (Engineering)]. Rybinsk, 2007. 164 p.
  7. Babaev A.A. Amortizatsiya, dempfirovanie i stabilizatsiya bortovykh opticheskikh priborov [Shock absorption, damping and stabilization of on-board optical instruments]. Leningrad: Mashinostroenie Publ., 1984. 232 p.
  8. Telepnev P.P., Kuznetsov D.A., Gerasimchuk V.V., Efanov V.V. Substantiation of requirements for design parameters of spacecraft structural elements based on dynamic analysis of transients. Vestnik NPO imeni S.A. Lavochkina. 2023. No. 2 (60). P. 13-20. (In Russ.). doi: 10.26162/LS.2023.60.2.002
  9. Xing W., Tuo W., Li X., Wang T., Yang C. Micro-vibration suppression and compensation techniques for in-orbit satellite: A review. Chinese Journal of Aeronautics. 2024. V. 37, Iss. 9. doi: 10.1016/j.cja.2024.05.036
  10. Haghshenas J. Vibration effects on remote sensing satellite images. Advances in Aircraft and Spacecraft Science. 2017. V. 4, Iss. 5. P. 543-553. doi: 10.12989/aas.2017.4.5.543
  11. Qin C., Xu Z., Xia M., He S., Zhang J. Design and optimization of the micro-vibration isolation system for large space telescope. Journal of Sound and Vibration. 2020. V. 482. doi: 10.1016/j.jsv.2020.115461
  12. Telepnev P.P., Zhiryakov A.V., Gerasimchuk V.V. Design calculation of the vibration load level of spacecraft structural elements by dynamic analysis. Vestnik NPO imeni S.A. Lavochkina. 2020. No. 1 (47). P. 13-18. (In Russ.). doi: 10.26162/LS.2020.47.1.002
  13. Zhang Y., Sheng C., Hu Q., Li M., Guo Z., Qi R. Dynamic analysis and control application of vibration isolation system with magnetic suspension on satellites. Aerospace Science and Technology. 2018. V. 75. P. 99-114. doi: 10.1016/j.ast.2017.12.041
  14. Telepnev P.P., Kuznetsov D.A. Metody vibrozashchity pretsizionnykh kosmicheskikh apparatov [Methods for vibration protection of precision spacecraft]. Khimki: Lavochkin Associacion Publ., 2019. 263 p.
  15. Spravochnik konstruktora optiko-mekhanicheskikh priborov / pod red. M.Ya. Krugera, V.A. Panova [Handbook of the designer of opto-mechanical instruments. Second edition, revised and supplemented]. Leningrad: Mashinostroenie Publ., 1967. 760 p.
  16. Malacara D., Malacara Z. Handbook of optical design. New York: Marcel Dekker, 2004. 522 p.
  17. Ostrovskiy Yu.I., Butusov M.M., Ostrovskaya G.V. Golograficheskaya interferometriya [Holographic interferometry]. Moscow: Nauka Publ., 1977. 339 p.
  18. Ryaboy V.M. Vibration control for optomechanical systems. Singapore: World Scientific, 2021. 280 p.
  19. Spravochnik tekhnologa-optika / pod red. M.A. Okatova [Optics engineer’s handbook]. Saint Petersburg: Politekhnika Publ., 2004. 679 p.
  20. Gerhard C. Optics manufacturing. Components and systems. New-York: CRC Press, 2018. 309 p.
  21. Ghareab D., Ibrahim A. Optical metrology with interferometry. Newcastle upon Tyne: Cambridge Scholars Publ., 2019. 312 p.
  22. Guzhov V.I., Il'inykh S.P. Komp'yuternaya interferometriya: ucheb. posobie [Computer interferometry]. Novosibirsk: NSTU Publ., 2004. 252 p.
  23. Francon M. La granularite laser (spekle) et ses applications en optique. Paris: Masson, 1978. 132 p.
  24. Ivchenko A.V., Zhuzhukin A.I. The system development for digital recording of speckle-interferograms of an oscillating object without vibration isolation. Proceedings of the International Conference on Dynamics and Vibroacoustics of Machines, DVM 2020 (September, 16-18, 2020, Samara, Russia). doi: 10.1109/dvm49764.2020.9243896
  25. Ivchenko A.V., Safin A.I. The technique improvement for GTE-wheel oscillation recording by the noise-proof digital speckle pattern interferometer. Proceedings of the International Conference on Dynamics and Vibroacoustics of Machines, DVM 2022 (September, 21-23, 2022, Samara, Russia). doi: 10.1109/dvm55487.2022.9930910
  26. Zhuzhukin A.I., Nepein K.G. Speckle interferometry setup for studying the frequencies and modes of vibrations of turbo-machine rotor wheels. Engineering Journal: Science and Innovation. 2022. No. 4 (124). (In Russ.) doi: 10.18698/2308-6033-2022-4-2169
  27. Zhuzhukin A.I. Ustroystvo dlya issledovaniya form kolebaniy [Device for studying vibration modes]. Patent RF, no. 71429, 2008. (Publ. 10.03.2008, bull. no. 7)
  28. Ivchenko A.V., Safin A.I. Investigation of the influence of broadband mechanical disturbances on the quality of recording interference patterns of GTE-wheel oscillations using a digital speckle pattern interferometer. Vestnik of Samara University. Aerospace and Mechanical Engineering. 2024. V. 23, no. 1. P. 160-176. (In Russ.). doi: 10.18287/2541-7533-2024-23-1-160-176
  29. Zhuravlev O.A., Shaposhnikov Yu.N., Shcheglov Yu.D., Komarov S.Yu. Primenenie metodov golograficheskoy i spekl-interferometrii dlya issledovaniya vibratsii i shuma mekhanicheskikh konstruktsiy [Application of holographic and speckle interferometry methods for studying vibration and noise of mechanical structures]. Samara: Samara State Aerospace University Publ., 2005. 143 p.
  30. Jones R., Wykes C. Holographic and speckle interferometry. A discussion of the theory, practice and application of the techniques. Cambridge: Cambridge University Press, 1983. 330 p.
  31. Klimenko I.S. Golografiya sfokusirovannykh izobrazheniy i spekl-interferometriya [Focused image holography and speckle interferometry]. Moscow: Nauka Publ., 1985. 222 p.
  32. Brock J.R. A note on the Beer-Lambert law. Analytica Chimica Acta. 1962. V. 27. P. 95-97.
  33. Rychkov S.P. Modelirovanie konstruktsiy v srede FemapwithNXNastran [Modeling structures under Femap with NX Nastran environment]. Moscow: DMK Press Publ., 2013. 784 p.
  34. Negmatov S.S., Pak I.I. Dempfiruyushchie svoystva polimernykh materialov i pokrytiy na ikh osnove. Obzor [Damping properties of polymeric materials and coatings based on them. Review]. Tashkent: UzNINTI Publ., 1974. 26 p.
  35. Frantsevich I.N., Voronov F.F., Bakuta S.A. Uprugie postoyannye i moduli uprugosti metallov i nemetallov. Spravochnik [Elastic constants and elastic moduli of metals and non-metals.Handbook]. Kiev: Naukova Dumka Publ., 1982. 287 p.
  36. Golovkin S.A., Pushkar A., Levin D.M. Uprugie i dempfiruyushchie svoystva konstruktsionnykh metallicheskikh materialov [Elastic and damping properties of structural metallic materials]. Moscow: Metallurgiya Publ., 1987. 191 p.
  37. Shakhmatov E.V., Zhuravlev O.A, Sergeev R.N., Safin A.I. Development and application of mobile digital speckle interferometer for vibrometer model sample honeycomb. Procedia Engineering. 2015. V. 106. P. 247-252. doi: 10.1016/j.proeng.2015.06.031
  38. Moeller K.D. Optics. Learning by computing, with examples using MathCad®, Matlab®, Mathematica®, and Maple®. New York: Springer-Verlag, 2007. 455 p. doi: 10.1007/978-0-387-69492-4
  39. Ivanov A.P. Optika rasseivayushchikh sred [Optics of scattering media]. Minsk: Nauka i Tekhnika Publ., 1969. 592 p.
  40. Biderman V.L. Teoriya mekhanicheskikh kolebaniy [Theory of mechanical vibrations]. Moscow: Vysshaya Shkola Publ., 1980. 408 p.
  41. Chicharro J.M., Bayon A., Salazar F. Measurement of damping in magnetic materials by optical heterodyne interferometry. Journal of Magnetism and Magnetic Materials. 2004. V. 268, Iss. 3. Р. 348-356. doi: 10.1016/s0304-8853(03)00546-8
  42. Handbook of plastic optics / ed. by S. Bäumer. Darmstadt: Wiley, 2006. 199 р.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © VESTNIK of Samara University. Aerospace and Mechanical Engineering, 2025

Creative Commons License
Este artigo é disponível sob a Licença Creative Commons Atribuição–Compartilhalgual 4.0 Internacional.

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».