Investigation of surface morphology, optical and electronic properties of Mg2Si thin films on Si(111)


如何引用文章

全文:

详细

The article presents the results of a study of the elemental composition, surface morphology, optical and electronic properties of Mg2Si thin films formed on Si (111). Both samples containing films were formed in layers by the method of reactive epitaxy, but at different heating temperatures of the substrates. The formed films consisting of alternating layers of Mg and Si at a ratio of 3:1, according to electron Auger spectroscopy, contain Mg and Si atoms in the associated layers. The Raman light scattering method established the presence of peaks on the graphs of samples at a shift of 258 and 348 cm-1 belonging to Mg2Si. Infrared spectroscopy data also indicate the presence of magnesium silicide in the films. The thickness of Mg2Si films was estimated from the data of the known dependence of the amplitude of absorption peaks at 272 cm-1 on the absorption coefficient, which gave the values of the thicknesses of the grown films. Based on the results of the study of samples in the infrared-ultraviolet range and on the basis of geometric calculations, the width of the Mg2Si band gap was determined.

作者简介

D. Fomin

Amur State University

编辑信件的主要联系方式.
Email: e-office@yandex.ru

Candidate of Science (Phys. & Math.), Associate Professor, Director of the K.E. Tsiolkovsky Scientific and Educational Center

俄罗斯联邦

A. Polyakov

Amur State University

Email: polyakov_a_1999@mail.ru

Master's student, M.Sc. of the K.E. Tsiolkovsky Scientific and Educational Center

俄罗斯联邦

K. Galkin

Institute of Automation and Control Processes, FEB RAS

Email: galkinkn@iacp.dvo.ru

Candidate of Science (Phys. & Math.), Senior Researcher

俄罗斯联邦

N. Galkin

Institute of Automation and Control Processes, FEB RAS

Email: galkin@iacp.dvo.ru

Doctor of Science (Phys. & Math.), Chief Researcher

俄罗斯联邦

参考

  1. Polyakov A.V., Fomin D.V., Novgorodtsev N.S. Magnesium silicide is a promising material for optical sensors. Uspekhi Prikladnoi Fiziki. 2023. V. 11, no. 1. P. 52-60. (In Russ.). doi: 10.51368/2307-4469-2023-11-1-52-60
  2. Yu H., Gao Ch., Zou J., Yang W., Xie Q. Simulation study on the effect of doping concentrations on the photodetection properties of Mg2Si/Si heterojunction photodetector. Photonics. 2021. V. 8, Iss. 11. doi: 10.3390/photonics8110509
  3. Yu H., Ji Sh., Luo X., Xie Q. Technology CAD simulations of Mg2Si/Si heterojunction photodetector based on the thickness effect. Sensors. 2021. V. 26, Iss. 16. doi: 10.3390/s21165559
  4. Yu H., Deng R., Mo Zh., Ji Sh., Xie Q. Fabrication and characterization of visible to near-infrared photodetector based on multilayer Graphene/Mg2Si/Si heterojunction. Nanomaterials. 2022. V. 12, Iss. 18. doi: 10.3390/nano12183230
  5. Shevlyagin A., Il’yaschenko V., Kuchmizhak A., Mitsai E., Amosov A., Balagan S., Kulinich S. Textured stainless steel as a platform for black Mg2Si/Si heterojunction solar cells with advanced photovoltaic performance. Materials. 2022. V. 15, Iss. 19. doi: 10.3390/ma15196637
  6. Goroshko D.L., Galkin N.G., Fomin D.V., Gouralnik A.S., Vavanova S.V. An investigation of the electrical and optical properties of thin iron layers grown on the epitaxial Si (111)-(2 × 2)-Fe phase and on an Si (111) 7 × 7 surface. Journal of Physics: Condensed Matter. 2009. V. 21. doi: 10.1088/0953-8984/21/43/435801
  7. Galkin N.G., Fomin D.V., Dubov V.L., Galkin K.N., Pyachin S.A., Burkov A. Comparison of crystal and phonon structures for polycrystalline BaSi2 films. Defect and Diffusion Forum. 2018. V. 386. P. 48-54. doi: 10.4028/ href='www.scientific.net/ddf.386.48' target='_blank'>www.scientific.net/ddf.386.48
  8. Dubov V.L., Fomin D.V. BaSi2 is a promising material for photovoltaic cells. Uspekhi Prikladnoi Fiziki. 2016. V. 4, no. 6. P. 599-605. (In Russ.)
  9. Galkin N.G., Goroshko D.L., Dubov V.L., Fomin D.V., Galkin K.N., Chusovitin E.A., Chusovitina S.V. SPE grown BaSi2 on Si (111) substrates: Optical and photoelectric properties of films and diode heterostructures on their base. Japanese Journal of Applied Physics. 2020. V. 59. doi: 10.35848/1347-4065/ab6b76
  10. Sekine T., Nagasawa Y., Kudoh M., Sakai Y., Parkes A.S., Geller J.D., Mogami A., Hirata K. Handbook of Auger Electron Spectroscopy. JEOL, 1982. 200 p.
  11. Galkin N.G., Vavanova S.V., Galkin K.N., Batalov R.I., Bayazitov R.M., Nuzhdin V.I. Pulsed nanosecond annealing of magnesium-implanted silicon. Technical Physics. 2013. V. 58, Iss. 1. P. 94-99. doi: 10.1134/S1063784213010064
  12. Galkin K.N., Galkin N.G., Batalov R.I., Bayazitov R.M. Synthesis of Mg2Si precipitates in Mg-implanted silicon by pulsed ion-beam treatment. Physics Procedia. 2012. V. 23. P. 45-48. doi: 10.1016/j.phpro.2012.01.012
  13. Terai Y., Hoshida H., Kinoshita R., Shevlyagin A., Chernev I., Gouralnik A. Photoreflectance spectra of highly-oriented Mg2Si (111)//Si (111) films. JJAP Conference Proceedings. 2020. V. 8. doi: 10.56646/jjapcp.8.0_011004
  14. Nezhdanov A.V., Afanaskin A.Y., Ershov A.V., Mashin A.I. Raman spectroscopy of amorphous silicon subjected to laser annealing. Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques. 2012. V. 6, Iss. 1. P. 1-5. doi: 10.1134/S1027451012010181
  15. Galkin K.N., Maslov A.M., Davydov V.A. Optical properties of multilayer materials based on silicon and nanosized magnesium silicide crystallites. Journal of Applied Spectroscopy. 2006. V. 73, Iss. 2. P. 227-233. doi: 10.1007/s10812-006-0063-7
  16. Galkin N.G., Galkin K.N., Vavanova S.V. Multilayer Si (111)/Mg2Si clusters/Si heterostructures: Formation, optical and thermoelectric properties. e-Journal of Surface Science and Nanotechnology. 2005. V. 3. P. 12-20. doi: 10.1380/ejssnt.2005.12
  17. Baleva M., Marinova M., Atanassov A. Infrared spectra of semiconducting silicides nanolayers. Journal of Physics: Conference Series. 2008. V. 113. doi: 10.1088/1742-6596/113/1/012043
  18. Oura K., Lifshits V.G., Saranin A.A., Zotov A.V., Katayama M. Surface Science: an introduction. Springer, 2003. 440 p.
  19. Galkin N.G., Maslov A.M., Konchenko A.V. Optical and photospectral properties of CrSi2 A-type epitaxial films on Si (111). Thin Solid Films. 1997. V. 311, Iss. 1-2. P. 230-238. doi: 10.1016/S0040-6090(97)00678-0
  20. Najafov B.A. Determining the optical constants in thin films a-Si:H and a-nk-C:H. International Journal of Applied and Fundamental Research. 2016. No. 12, part 9. P. 1613-1617. (In Russ.)
  21. Shalimova K.V. Fizika poluprovodnikov [Physics of semiconductors]. Moscow: Atomenergoizdat Publ., 1985. 392 p.
  22. AkiyamaT., Hori N., Tanigawa Sh., Tsuya D., Udono H. Fabrication of Mg2Si pn-junction photodiode with shallow mesa-structure and ring electrode. JJAP Conference Proceedings. 2017. V. 5. doi: 10.56646/jjapcp.5.0_011102
  23. Shevlyagin A., Chernev I., Galkin N., Gerasimenko A., Gutakovskii A., Hoshida H., Terai Y., Nishikawa N., Ohdaira K. Probing the Mg2Si/Si (111) heterojunction for photovoltaic applications. Solar Energy. 2020. V. 211. P. 383-395. doi: 10.1016/j.solener.2020.09.085
  24. Stathokostopoulos D., Teknetzi A., Tarani E., Karfaridis D., Chrissafis K., Hatzikraniotis E., Vourlias G. Synthesis and characterization of nanostructured Mg2Si by pack cementation process. Results in Materials. 2022. V. 13. doi: 10.1016/j.rinma.2021.100252

补充文件

附件文件
动作
1. JATS XML

版权所有 © VESTNIK of Samara University. Aerospace and Mechanical Engineering, 2024

Creative Commons License
此作品已接受知识共享署名-相同方式共享 4.0国际许可协议的许可

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».