Selection of aerodynamic characteristics and engine parameters of a maneuverable aircraft under epistemic uncertainty


如何引用文章

全文:

详细

At the preliminary stage of aircraft design, it is usually required to solve the problem of insufficient initial data for applying traditional algoristic-type mathematical programming models. In many cases, numerous input parameters cannot be accurately specified at the time of making design decisions. If the inaccuracy of parameters is not taken into account, the actual values of target functions may differ significantly from the calculated ones when solving optimization problems. In this regard, the issue of current interest is the development of algorithms to improve the reliability of design decisions under conditions of epistemological uncertainty when experts engage in the formation of initial data. The paper considers the problem of selecting aerodynamic characteristics and engine parameters of maneuverable aircraft under conditions of uncertainty associated with inaccuracy of expert data. The applied problem under consideration is further complicated by the necessity to include “black box” models in the algorithms being developed. The paper proposes algorithms that apply the uncertainty theory together with “black box” models that implement optimization calculation techniques derived from previous engineering practice of aircraft design. Using these algorithms, experts are able to set uncertain parameters whereby the lack of data is factored in using uncertainty distribution functions. In cases of monotonicity of uncertain parameters in target functions, application of the uncertainty theory provides a significant reduction in computational costs compared to the method of statistical modeling in optimization calculations. The paper presents the results of computational studies of the developed algorithms. A genetic algorithm (mathematical optimization solver) is used to optimize the search for design solutions. Pareto frontiers are obtained for different confidence levels enabling to make design decisions including values of aerodynamic characteristics and engine parameters of maneuverable aircraft.

作者简介

G. Veresnikov

V.A. Trapeznikov Institute of Control Sciences of the Russian Academy of Sciences

编辑信件的主要联系方式.
Email: veresnikov@mail.ru

Doctor of Science (Engineering), Leading Researcher of the Laboratory of Decision Support Systems

俄罗斯联邦

O. Ogorodnikov

V.A. Trapeznikov Institute of Control Sciences of the Russian Academy of Sciences

Email: o.v.ogorodnikov@gmail.com

Researcher of the Laboratory of Decision Support Systems

俄罗斯联邦

参考

  1. Malenkov A.A. Design solutions selection while developing a system of unmanned flying vehicles in conditions of multi-target uncertainty. Aerospace MAI Journal. 2018. V. 25, no. 2. P. 7-15. (In Russ.)
  2. Balyk V.M., Kalutsky N.S. A statistical synthesis of stable design choices for flying vehicle design processes in conditions of multiple-factor uncertainty. Aerospace MAI Journal. 2008. V. 15, no. 1. P. 29-36. (In Russ.)
  3. Jaeger L., Gogu C., Segonds S., Bes C. Aircraft multidisciplinary design optimization under both model and design variables uncertainty. Journal of Aircraft. 2013. V. 50, Iss.
  4. P. 528-538. doi: 10.2514/1.C031914
  5. Gori G., Le Maître O., Congedo P.M. A confidence-based aerospace design approach robust to structural turbulence closure uncertainty. Computers and Fluids. 2022. V. 246. doi: 10.1016/j.compfluid.2022.105614
  6. Dawei Z., Jinyu Z., Chunqiu L., Zhiling W. A short review of reliability-based design optimization. IOP Conference Series: Materials Science and Engineering. 2021. V. 1043. doi: 10.1088/1757-899X/1043/3/032041
  7. Rubinstein R.Y., Dirk P.K. Simulation and the Monte Carlo method. New York: Wiley, 2016. 432 p.
  8. Rahman S., Xu H. A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics. Probabilistic Engineering Mechanics. 2004. V. 19, Iss. 4. P. 393-408. doi: 10.1016/j.probengmech.2004.04.003
  9. Chun J. Reliability-based design optimization of structures using the second-order reliability method and complex-step derivative approximation. Applied Sciences. 2021. V. 11, Iss. 11. doi: 10.3390/app11115312.
  10. Du Z., Wan Z., Yang Ch. Robust aeroelastic design optimization of hypersonic wings considering uncertainty in heat flux. Transactions of the Japan Society for Aeronautical and Space Sciences. 2017. V. 60, Iss. 3. P. 152-163. doi: 10.2322/tjsass.60.152
  11. Zhu J., Qiu Z. Interval analysis for uncertain aerodynamic loads with uncertain-but-bounded parameters. Journal of Fluids and Structures. 2018. V. 81. P. 418-436. doi: 10.1016/J.JFLUIDSTRUCTS.2018.05.009
  12. Neufeld D., Nguyen N.-V., Lee J.-W., Kim S. A multidisciplinary possibilistic approach to light aircraft conceptual design. Proceeding of 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (April, 23-26, 2012, Honolulu, Hawaii). 2012. doi: 10.2514/6.2012-1434
  13. Winyangkul S., Sleesongsom S., Bureerat S. Reliability-based design of an aircraft wing using a fuzzy-based metaheuristic. Applied Sciences. 2021. V. 11, Iss. 14. doi: 10.3390/app11146463
  14. Altab H., Rahman A., Hossen J., Iqbal A.P. Prediction of aerodynamic characteristics of an aircraft model with and without winglet using fuzzy logic technique. Aerospace Science and Technology. 2011. V. 15, Iss. 8. P. 595-605. doi: 10.1016/j.ast.2010.12.003
  15. Nikulin V.S., Khizhnyakov Yu.N., Storozhev S.A. Virtual adaptive vector-matrix meter of the oxidizer of the combustion chamber of a gas turbine engine. Trudy MAI. 2021. No. 121. (In Russ.). doi: 10.34759/trd-2021-121-21
  16. Chang R.C. Fuzzy logic-based aerodynamic modeling with continuous differentiability. Mathematical Problems in Engineering. 2013. V. 2013. doi: 10.1155/2013/609769
  17. Bashkirov I.G., Chernyshev S.L., Veresnikov G.S. Parametric synthesis optimization models for high speed transport aerodynamic design to comply with flight safety and low environmental impact requirements. Acta Astronautica. 2023. V. 204. P. 720-727. doi: 10.1016/j.actaastro.2022.10.023
  18. Veresnikov G.S., Bashkirov I.G. Synthesis of design solutions for preliminary aerodynamic design of an advanced supersonic transport under parametric epistemic uncertainty. IOP Conference Series: Materials Science and Engineering. 2022. V. 1226. doi: 10.1088/1757-899X/1226/1/012099
  19. Liu B. Uncertainty theory. Berlin: Springer, 2015. 487 p. doi: 10.1007/978-3-662-44354-5
  20. Aviatsiya: entsiklopediya [Aviation. Encyclopedia / ed. by G.P. Svishchev]. Moscow: Bol'shaya Rossiyskaya Entsiklopediya Publ., 1994. 736 p.
  21. Aerodinamika, ustoychivost' i upravlyaemost' sverkhzvukovykh samoletov [Aerodynamics, stability and controllability of supersonic aircraft /ed. by G.S. Byushgens]. Moscow: Fizmatlit Publ., 1998. 816 p.

补充文件

附件文件
动作
1. JATS XML

版权所有 © VESTNIK of Samara University. Aerospace and Mechanical Engineering, 2024

Creative Commons License
此作品已接受知识共享署名-相同方式共享 4.0国际许可协议的许可

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».