On the possibility of determining the parameters of the ionosphere when removing a nanosatellite from orbit using an uninsulated conductive tether
- 作者: Bystranova T.A.1, Zabolotnov Y.M.1
-
隶属关系:
- Samara National Research University
- 期: 卷 24, 编号 1 (2025)
- 页面: 19-30
- 栏目: AIRCRAFT AND SPACE ROCKET ENGINEERING
- URL: https://journal-vniispk.ru/2542-0453/article/view/311504
- DOI: https://doi.org/10.18287/2541-7533-2025-24-1-19-30
- ID: 311504
如何引用文章
全文:
详细
Currently, one of the ways to quickly remove spent nanosatellites from orbit is the use of non-insulated conductive tether, during the movement of which an electrodynamic braking force arises in the Earth's magnetic field, transferring the nanosatellite to the trajectory of descent into the atmosphere. In this paper, the possibility of determining the concentration of electrons in the Earth's ionosphere from the resulting current distribution in an uninsulated tether during the deceleration of a nanosatellite is analyzed. It is shown that the concentration of electrons directly affects the position of the zero potential point on the cable and, therefore, this fact can be used to solve the problem. An algorithm for determining the electron concentration by the position of the zero potential point was developed. Numerical simulation of the process of determining the electron concentration during the deceleration of a nanosatellite is carried out, taking into account the unavoidable measurement errors.
作者简介
T. Bystranova
Samara National Research University
编辑信件的主要联系方式.
Email: tsskd@mail.ru
ORCID iD: 0009-0002-5241-3790
Postgraduate Student of the Department of Software Systems
俄罗斯联邦Yu. Zabolotnov
Samara National Research University
Email: yumz@yandex.ru
ORCID iD: 0000-0002-0409-3107
Doctor of Science (Engineering), Professor, Professor of the Department of Software Systems
俄罗斯联邦参考
- Zhong R., Zhu Z.H. Dynamics of nanosatellite deorbit by bare electrodynamic tether in low earth orbit. Journal of Spacecraft and Rockets. 2013. V. 50, Iss. 3. P. 691-700. doi: 10.2514/1.a32336
- Ohkawa Y., Kawamoto S., Okumura T., Iki K., Okamoto H., Inoue K., Uchiyama T., Tsujita D. Review of KITE – Electrodynamic tether experiment on the H-II transfer vehicle. Acta Astronautica. 2020. V. 177. P. 750-758. doi: 10.1016/j.actaastro.2020.03.014
- Beletskiy V.V., Levin E.M. Dinamika kosmicheskikh trosovykh sistem [Dynamics of space tether systems]. Moscow: Nauka Publ., 1990. 329 p.
- Levin E.M. Dynamic analysis of Space Tether missions. San Diego, CA: American Astronautical Society, 2007. 453 p.
- Sánchez-Arriaga G., Bombardelli C., Chen X. Impact of nonideal effects on bare electrodynamic tether performance. Journal of Propulsion and Power. 2015. V. 31, Iss. 3. P. 951-955. doi: 10.2514/1.b35393
- Xie K., Liang F., Xia Q., Wang N., Zhang Z., Yuan H., Liu X., Wu Z. Power generation on a bare electrodynamic tether during debris mitigation in space. International Journal of Aerospace Engineering. 2021. V. 2021. doi: 10.1155/2021/8834196
- Gangqiang L., Zhu Z. Parameter influence on electron collection efficiency of a bare electrodynamic tether. Science China Information Sciences. 2018. V. 61. doi: 10.1007/s11432-017-9219-1
- Voevodin P.S., Zabolotnov Yu.M. Modeling of the braking process of a nanosatellite using an electrodynamic cable system. Proceedings of the XXI International Conference «Complex Systems: Control and Modeling Problems» (September, 3-6, 2019, Samara, Russia). V. 2. Samara: Ofort Publ., 2019. P. 232-237. (In Russ.)
- Estes R.D., Lorenzini E.C., Sanmartin J., Peláez J., Martínez-Sánchez M., Johnson C.L., Vas I.E. Bare tethers for electrodynamic spacecraft propulsion. Journal of Spacecraft and Rockets. 2000. V. 37, Iss. 2. P. 205-211. doi: 10.2514/2.3567
- Sanmartin J.R., Martinez-Sanchez M., Ahedo E. Bare wire anodes for electrodynamic tethers. Journal of Propulsion and Power. 1993. V. 9, Iss. 3. P. 353-360. doi: 10.2514/3.23629
- Bilitza D., Altadill V., Truhlik V., Shubin V., Galkin I., Reinisch B., Huang X. International Reference Ionosphere 2016: From ionospheric climate to real-time weather predictions. Space Weather. 2017. V. 15, Iss. 2. P. 418-429. doi: 10.1002/2016sw001593
- Okhotsimskiy D.E., Sikharulidze Yu.G. Osnovy mekhaniki kosmicheskogo poleta [Fundamentals of space flight mechanics]. Moscow: Nauka Publ., 1990. 448 p.
补充文件
