Numerical modeling of delamination in composite panel under low-velocity contact with hail
- 作者: Le V.1, Burnysheva Т.V.1
-
隶属关系:
- Novosibirsk State Technical University
- 期: 卷 24, 编号 1 (2025)
- 页面: 131-142
- 栏目: MECHANICAL ENGINEERING
- URL: https://journal-vniispk.ru/2542-0453/article/view/311513
- DOI: https://doi.org/10.18287/2541-7533-2025-24-1-131-142
- ID: 311513
如何引用文章
全文:
详细
A technique is proposed to simulate multiple impacts of hailstones on composite panels based on a developed model and testing of low-velocity hailstone impacts. Using Instron 3369 and BiSS, compression tests were conducted on ice samples frozen at temperatures of –40°C, –30°C, and –20°C, respectively. Compressive strength and volumetric density were determined for each group. The elastic modulus ranged from 154 to 1214 MPa. Statistical data processing methods were applied to determine the variability intervals and average values of the elastic modulus for each interval at a freezing temperature of –20°C. Studies on hail impact on composite panels have highlighted delamination as a major failure mode. Based on experimental results, linear, quadratic, and cubic dependencies of damage (number of delaminated layers) on the composite plate when subjected to a 35 mm diameter hailstone impact on the elastic modulus and velocity of the ice were computed. The maximum number of layers destructed is 16, which is 80% of the panel thickness at a velocity of 170 m/s, with the ice's elastic modulus being 1250 MPa. Impact velocity significantly affects the composite panels damage susceptibility, with the material's elastic modulus having a weaker effect. Experimental findings show a significant correlation between impact speed and damage extent, with larger hailstones causing deeper delamination.
作者简介
V.T. Le
Novosibirsk State Technical University
编辑信件的主要联系方式.
Email: tuanleviet86@gmail.com
ORCID iD: 0009-0000-8729-3261
Postgraduate Student of the Department of Aircraft Strength
俄罗斯联邦Т. Burnysheva
Novosibirsk State Technical University
Email: tburn@mail.ru
Doctor of Science (Engineering), Associate Professor
俄罗斯联邦参考
- Field P.R., Hand W., Cappelluti G., McMillan A., Foreman A., Stubbs D., Willows M. Hail threat standardisation. Final report for EASA.2008.OP.25, 2008. 133 p.
- Abrate S. Impact on laminated composite materials. Applied Mechanics Reviews. 1991. V. 44, Iss. 4. P. 155-190. doi: 10.1115/1.3119500
- Abrate S. Impact on laminated composites: recent advances. Applied Mechanics Reviews. 1994. V. 47, Iss. 11. P. 517-544. doi: 10.1115/1.3111065
- Schoeppner G.A., Abrate S. Delamination threshold loads for low velocity impact on composite laminates. Composites Part A: Applied Science and Manufacturing. 2000. V. 31, Iss. 9. P. 903-915. doi: 10.1016/S1359-835X(00)00061-0
- Hwang W.C., Sun C.T. Failure analysis of laminated composites by using iterative three-dimensional finite element method. Computers & Structures. 1989. V. 33, Iss. 1. P. 41-47. doi: 10.1016/0045-7949(89)90127-2
- Finn S.R., Springer G.S. Delaminations in composite plates under transverse static or impact loads – A model. Composite Structures. 1993. V. 23, Iss. 3. P. 177-190. doi: 10.1016/0263-8223(93)90221-B
- Luo R.K., Green E.R., Morrison C.J. Impact damage analysis of composite plates. International Journal of Impact Engineering. 1999. V. 22, Iss. 4. P. 435-447. doi: 10.1016/S0734-743X(98)00056-6.
- Krueger R., O’Brien T.K. A shell/3D modeling technique for the analysis of delaminated composite laminates. Composites Part A: Applied Science and Manufacturing. 2001. V. 32, Iss. 1. P. 25-44. doi: 10.1016/S1359-835X(00)00133-0
- Eason T.G., Ochoa O.O. Modeling progressive damage in composites: a shear deformable element for ABAQUS. Composite Structures. 1996. V. 34, Iss. 2. P. 119-128. doi: 10.1016/0263-8223(95)00136-0.
- Barbero E.J., Reddy J.N. Modeling of delamination in composite laminates using a layer-wise plate theory. International Journal of Solids and Structures. 1991. V. 28, Iss. 3. P. 373-388. doi: 10.1016/0020-7683(91)90200-Y
- Reedy E.D., Mello F.J., Guess T.R. Modeling the initiation and growth of delaminations in composite structures. Journal of Composite Materials. 1997. V. 31, Iss. 8. P. 812-831. doi: 10.1177/002199839703100804
- Seeley C., Chattopadhyay A. Modeling of smart composite laminates including debonding – A finite element approach. Proceedings of the 38th Structures, Structural Dynamics, and Materials Conference (April, 07-10, 1997, Kissimmee, FL, U.S.A.). doi: 10.2514/6.1997-1344
- Zhang Y., Qian Z., Lv S., Huang W., Ren J., Fang Z., Chen X. Experimental investigation of uniaxial compressive strength of distilled water ice at different growth temperatures. Water. 2022. V. 14, Iss. 24. doi: 10.3390/w14244079
- Gingold R.A., Monaghan J.J. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society. 1977. V. 181, Iss. 3. P. 375-389. doi: 10.1093/mnras/181.3.375
- Le V.T. Numerical modeling of aircraft composite panels ice impact damages. Aerospace MAI Journal. 2023. V. 30, no. 4. P. 120-129. (In Russ.)
- Hashin Z. Failure criteria for unidirectional fiber composites. Journal of Applied Mechanics. 1980. V. 47, Iss. 2. P. 329-334. doi: 10.1115/1.3153664
补充文件
